Add automatic downloading support (must launch SpotifyKeyDumperInjector before Spotify launches)

This commit is contained in:
_ 2020-11-17 12:11:33 -07:00
parent 270debbdd0
commit 89d609600d
11 changed files with 1145 additions and 29 deletions

View File

@ -8,15 +8,37 @@ keyToLE_v25 keyToLE_v25_hook = nullptr;
typedef int (__cdecl* keyToLE_v28)(unsigned int* dest, int* key, int bits, bool isEncoded);
keyToLE_v28 keyToLE_v28_hook = nullptr;
typedef int (__thiscall* authTokenHook_v45)(void* This, char* authToken, int a3, int a4, int a5, size_t tokenLength,
typedef int (__thiscall* authTokenOld_v45)(void* This, char* authToken, int a3, int a4, int a5, size_t tokenLength,
int a7, int a8, int a9, __int64 bearerStr, int a11, int a12, int a13, int a14, char a15, int a16, int int_40,
int a18, char a19, int a20);
authTokenHook_v45 authToken_v45_hook = nullptr;
authTokenOld_v45 authTokenOld_v45_hook = nullptr;
typedef char* (__cdecl* getFileId_v45)(char* dest, char* src, size_t srcLength);
getFileId_v45 getFileId_v45_hook = nullptr;
typedef int* (__thiscall* authToken_v45)(void* This, int* a2);
authToken_v45 authToken_v45_hook = nullptr;
std::string prevKeyStr = std::string();
typedef char* (__cdecl* hexToStr_v45)(char* dest, BYTE* src, size_t srcLength);
hexToStr_v45 hexToStr_v45_hook = nullptr;
typedef int* (__thiscall* openTrack_v45)(void* This, int a2, void* a3, int a4, __int64 position, char a6, void* a7);
openTrack_v45 openTrack_v45_hook = nullptr;
typedef int* (__thiscall* log_v45)(void* This, int a2, int a3, void* a4, const char* classStr, int a6,
DWORD* logThing);
log_v45 log_v45_hook;
typedef void (__thiscall* fileIdWriter_v45)(void* This, int* a2);
fileIdWriter_v45 fileIdWriter_v45_hook = nullptr;
//typedef int(__stdcall* signalEmitter_v45)(int a1, int a2);
typedef void (__thiscall* signalEmitter_v45)(void* This, int a1, int a2);
signalEmitter_v45 signalEmitter_v45_hook = nullptr;
std::string authToken;
std::string keyStr = std::string();
std::string trackUriStr = std::string();
__int64 newPosition = 0;
bool signalled = false;
int __cdecl keyToLE_hook_v25(unsigned int* dest, int* key, int bits)
{
@ -28,10 +50,10 @@ int __cdecl keyToLE_hook_v25(unsigned int* dest, int* key, int bits)
// Only print out key if it is different
std::string newKeyStr = Utils::HexString(keyBufPtr, 16);
if (newKeyStr.compare(prevKeyStr) != 0)
if (newKeyStr.compare(keyStr) != 0)
std::cout << "Key: " << newKeyStr << std::endl << std::endl;
prevKeyStr = newKeyStr;
keyStr = newKeyStr;
}
return keyToLE_v25_hook(dest, key, bits);
@ -77,42 +99,138 @@ int __cdecl keyToLE_hook_v28(unsigned int* dest, int* key, int bits, bool isEnco
}
// Copy key bytes to new buffer
unsigned char keyBuffer[16];
unsigned char* keyBufPtr = keyBuffer;
char keyBuffer[16];
char* keyBufPtr = keyBuffer;
memcpy(keyBufPtr, decodedKeyPtr, 16);
// Only print out key if it is different
std::string newKeyStr = Utils::HexString(keyBufPtr, 16);
if (newKeyStr.compare(prevKeyStr) != 0)
std::cout << "Key: " << newKeyStr << std::endl << std::endl;
prevKeyStr = newKeyStr;
std::string newKey = std::string(keyBufPtr, 16);
if (newKey.compare(keyStr) != 0)
{
std::cout << "Key: " << Utils::HexString(reinterpret_cast<BYTE*>(&newKey[0]), 16) << std::endl << std::endl;
keyStr = newKey;
}
}
return keyToLE_v28_hook(dest, key, bits, isEncoded);
}
int __fastcall authTokenHook_hook_v45(void* This, void* _EDX, char* authToken, int a3, int a4, int a5,
int __fastcall authTokenHookOld_hook_v45(void* This, void* _EDX, char* authToken, int a3, int a4, int a5,
size_t tokenLength, int a7, int a8, int a9, __int64 bearerStr, int a11, int a12, int a13, int a14, char a15,
int a16, int int_40, int a18, char a19, int a20)
{
if (tokenLength == 311)
{
std::cout << "Auth token: " << authToken << std::endl << std::endl;
//std::cout << "Auth token: " << authToken << std::endl << std::endl;
::authToken = std::string(authToken);
}
return authToken_v45_hook(This, authToken, a3, a4, a5, tokenLength, a7, a8, a9, bearerStr, a11, a12, a13, a14, 15,
a16, int_40, a18, a19, a20);
return authTokenOld_v45_hook(This, authToken, a3, a4, a5, tokenLength, a7, a8, a9, bearerStr, a11, a12, a13, a14,
a15, a16, int_40, a18, a19, a20);
}
char* __cdecl hexToStr_hook_v45(char* dest, char* src, size_t srcLength)
int* __fastcall authToken_hook_v45(void* This, void* _EDX, int* a2)
{
char* authToken = (char*) *(DWORD*)((a2) + 2); // 8/4 = 2
//std::cout << "authToken: " << authToken << std::endl << std::endl;
::authToken = std::string(authToken);
return authToken_v45_hook(This, a2);
}
char* __cdecl hexToStr_hook_v45(char* dest, BYTE* src, size_t srcLength)
{
//std::cout << "hexToStr hook" << std::endl;
if (srcLength == 20)
{
// Assume it is file id
//std::cout << "File id: " << Utils::HexString(src, srcLength) << std::endl << std::endl;
//std::cout << "file id!?" << std::endl;
}
return getFileId_v45_hook(dest, src, srcLength);
return hexToStr_v45_hook(dest, src, srcLength);
}
int* __fastcall openTrack_hook_v45(void* This, void* _EDX, int a2, void* a3, int a4, __int64 position, char a6,
void* a7)
{
std::cout << "openTrack!!!" << std::endl << std::endl;
return openTrack_v45_hook(This, a2, a3, a4, newPosition, a6, a7);
}
int* __fastcall log_hook_v45(void* This, void* _EDX, int a2, int a3, void* a4, const char* classStr, int a6,
DWORD* logThing)
{
if (!Utils::BadPtr(logThing))
{
char* logChars = (char*)(*logThing);
if (!Utils::BadPtr(logChars))
{
//std::string logStr = std::string(logChars).substr(8, 5);
std::string logStr = std::string(logChars);
//std::cout << "logStr: " << logStr << std::endl;
if (logStr.compare(8, 9, "track_uri") == 0)
{
if (logStr.compare(19, 13, "spotify:track") == 0)
{
//std::cout << "Track URI: " << logStr.substr(19, std::string::npos) << std::endl;
trackUriStr = logStr.substr(19, std::string::npos);
newPosition = 0;
}
//else if (logStr.compare(19, 11, "spotify:ad") == 0) // Possibly this works?
else
{
std::cout << "Skipping ad: " << logStr.substr(19, std::string::npos) << std::endl;
newPosition = 29000; // 29 seconds: duration of ad
}
}
}
}
return log_v45_hook(This, a2, a3, a4, classStr, a6, logThing);
}
void __fastcall fileIdWriter_hook_v45(void* This, void* _EDX, int* a2)
{
// [[ebp+8]+28]
char* fileId = (char*) *(DWORD*)(a2 + 16); // 0x40 / 4 = 16
//std::cout << "fileId: " << fileId << std::endl << std::endl;
if (signalled)
{
//std::cout << "signalled = false" << std::endl;
signalled = false;
std::thread t2(Utils::DownloadSong, std::string(fileId), trackUriStr, keyStr, authToken);
t2.detach();
}
return fileIdWriter_v45_hook(This, a2);
}
int signalEmitterInitCount = 0;
const int signalEmitterRequired = 5;
void __fastcall signalEmitter_hook_v45(void* This, void* _EDX, int a1, int a2)
{
//std::cout << "signalEmitter!!!" << std::endl << std::endl;
// Required in order to guarentee accurate data needed
if (signalEmitterInitCount < signalEmitterRequired)
signalEmitterInitCount++;
else
{
//std::cout << "signalled = true" << std::endl;
signalled = true;
}
return signalEmitter_v45_hook(This, a1, a2);
}
char* GetKeyFuncAddrV26()
@ -144,7 +262,7 @@ void Hooks::Init()
int spotifyVer = Utils::GetSpotifyVersion();
// Method is stripped from Release build if this isn't here :/
std::cout << "Spotify version: " << Utils::GetSpotifyVersion() << std::endl;
std::cout << "Spotify version: 1.1." << Utils::GetSpotifyVersion() << std::endl << std::endl;
switch (spotifyVer)
{
@ -173,8 +291,14 @@ void Hooks::Init()
break;
case 45:
keyToLE_v28_hook = (keyToLE_v28)Utils::TrampHook32((char*)0x010CF780, (char*)keyToLE_hook_v28, 6);
//authToken_v45_hook = (authTokenHook_v45)Utils::TrampHook32((char*)0x00EBA4F0, (char*)authTokenHook_hook_v45, 5);
//authToken_v45_hook = (authTokenHook_v45)Utils::TrampHook32((char*)0x00EBA4F0, (char*)authTokenHook_hook_v45, 5);
authToken_v45_hook = (authToken_v45)Utils::TrampHook32((char*)0x00BF75F0, (char*)authToken_hook_v45, 7);
//openTrack_v45_hook = (openTrack_v45)Utils::TrampHook32((char*)0x00CA5740, (char*)&openTrack_hook_v45, 5);
log_v45_hook = (log_v45)Utils::TrampHook32((char*)0x10F2370, (char*)&log_hook_v45, 5);
fileIdWriter_v45_hook = (fileIdWriter_v45)Utils::TrampHook32((char*)0x00CBB560, (char*)&fileIdWriter_hook_v45,
5);
signalEmitter_v45_hook = (signalEmitter_v45)Utils::TrampHook32((char*)0x00B095A0, (char*)signalEmitter_hook_v45,
5);
//hexToStr_v45_hook = (hexToStr_v45)Utils::TrampHook32((char*)0x010F81A0, (char*)hexToStr_hook_v45, 7);
break;
case 46:
keyToLE_v28_hook = (keyToLE_v28)Utils::TrampHook32((char*)0x010C2FB0, (char*)keyToLE_hook_v28, 6);

View File

@ -1,7 +1,7 @@
#include "pch.h"
#include "Hooks.h"
static const char* VERSION = "0.1.1";
static const char* VERSION = "0.2.0";
DWORD WINAPI InitMain(LPVOID lpParam)
{
@ -11,7 +11,7 @@ DWORD WINAPI InitMain(LPVOID lpParam)
freopen_s(&fDummy, "CONOUT$", "w", stderr);
freopen_s(&fDummy, "CONOUT$", "w", stdout);
std::cout << "SpotifyKeyDumper v" << VERSION << std::endl << std::endl;
std::cout << "SpotifyKeyDumper version: " << VERSION << std::endl;
Hooks::Init();

View File

@ -86,7 +86,7 @@
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;_DEBUG;SPOTIFYKEYDUMPER_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;_CRT_SECURE_NO_WARNINGS;_DEBUG;SPOTIFYKEYDUMPER_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeader>Use</PrecompiledHeader>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
@ -103,7 +103,7 @@
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;NDEBUG;SPOTIFYKEYDUMPER_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<PreprocessorDefinitions>WIN32;_CRT_SECURE_NO_WARNINGS;NDEBUG;SPOTIFYKEYDUMPER_EXPORTS;_WINDOWS;_USRDLL;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeader>Use</PrecompiledHeader>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
@ -153,12 +153,15 @@
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="aes.h" />
<ClInclude Include="aes.hpp" />
<ClInclude Include="framework.h" />
<ClInclude Include="Hooks.h" />
<ClInclude Include="pch.h" />
<ClInclude Include="Utils.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="aes.cpp" />
<ClCompile Include="Hooks.cpp" />
<ClCompile Include="SpotifyKeyDumper.cpp" />
<ClCompile Include="pch.cpp">

View File

@ -27,6 +27,12 @@
<ClInclude Include="Utils.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="aes.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="aes.hpp">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<ClCompile Include="pch.cpp">
@ -41,5 +47,8 @@
<ClCompile Include="Utils.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="aes.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

View File

@ -1,5 +1,8 @@
#include "pch.h"
#include "Utils.h"
#include "aes.h"
const uint8_t IV[] = { 0x72, 0xE0, 0x67, 0xFB, 0xDD, 0xCB, 0xCF, 0x77, 0xEB, 0xE8, 0xBC, 0x64, 0x3F, 0x63, 0x0D, 0x93 };
bool Utils::Detour32(char* src, char* dst, const intptr_t len)
{
@ -46,6 +49,7 @@ char* Utils::TrampHook32(char* src, char* dst, const intptr_t len)
}
int spotifyVer = -1;
int spotifyVerEnd = -1;
int Utils::GetSpotifyVersion()
{
if (spotifyVer != -1)
@ -68,6 +72,7 @@ int Utils::GetSpotifyVersion()
DWORD dwSecondRight = HIWORD(dwFileVersionLS);
DWORD dwRightMost = LOWORD(dwFileVersionLS);
spotifyVerEnd = dwRightMost;
return spotifyVer = dwSecondRight;
}
@ -80,4 +85,287 @@ std::string Utils::HexString(BYTE* data, int len)
ss << std::setw(2) << std::setfill('0') << (int)data[i];
return ss.str();
}
static const std::string illegalChars = "\\/:?\"<>|";
void Utils::RemoveForbiddenChar(std::string* str)
{
std::string::iterator it;
for (it = str->begin(); it < str->end(); ++it)
{
bool found = illegalChars.find(*it) != std::string::npos;
if (found)
*it = '_';
}
}
void Utils::RemoveForbiddenCharW(std::wstring* str)
{
std::wstring::iterator it;
for (it = str->begin(); it < str->end(); ++it)
{
bool found = illegalChars.find(*it) != std::string::npos;
if (found)
*it = '_';
}
}
std::wstring Utils::Utf8ToUtf16(const std::string& str)
{
std::wstring convertedString;
int requiredSize = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), -1, 0, 0);
if (requiredSize > 0)
{
std::vector<wchar_t> buffer(requiredSize);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), -1, &buffer[0], requiredSize);
convertedString.assign(buffer.begin(), buffer.end() - 1);
}
return convertedString;
}
struct SongInfo
{
std::string title, artist, album, cover;
} songInfo;
static const std::string albumSearchPattern = "\x68\x65\x69\x67\x68\x74\x22\x20\x3A\x20\x36\x34\x30";
static const std::wstring songDirRoot = L"Downloads";
static std::wstring songDir = songDirRoot;
void Utils::DownloadSong(std::string fileId, std::string trackUri, std::string key, std::string authToken)
{
std::cout << "Downloading song..." << std::endl;
/*std::cout << "fileId = " << fileId << std::endl;
std::cout << "trackUri = " << trackUri << std::endl;
std::cout << "key = " << key << std::endl;
std::cout << "authToken = " << authToken << std::endl;*/
// Get storage resolve from Spotify
std::string srStr = DownloadSpotifyUrl("spclient.wg.spotify.com",
"/storage-resolve/files/audio/interactive_prefetch/" + fileId + "?product=0", authToken);
if (srStr.substr(0, 5).compare("Error") == 0)
{
std::cout << srStr << std::endl;
return;
}
// Parse storage resolve response to get the encrypted song data's URL
std::string songHost = (srStr.substr(srStr.find("https://") + 8))
.erase(srStr.substr(srStr.find("https://") + 8).find("/audio/"));
std::string songPath = srStr.substr(srStr.find("/audio/")).erase(srStr.substr(srStr.find("/audio/")).find("=") + 85);
// Download encrypted song data from Spotify
std::string songStr = DownloadSpotifyUrl(songHost, songPath, "");
//std::cout << "URL: " << songHost + songPath << std::endl;
if (songStr.substr(0, 6).compare("<HTML>") == 0)
{
std::cout << "Error: " + songStr << std::endl;
return;
}
// Decrypt encrypted song data
struct AES_ctx ctx;
AES_init_ctx_iv(&ctx, reinterpret_cast<const uint8_t*>(&key[0]), IV);
AES_CTR_xcrypt_buffer(&ctx, reinterpret_cast<uint8_t*>(&songStr[0]), songStr.size());
// Remove custom Spotify Ogg page from beginning of file
songStr = songStr.substr(songStr.find("ÿÿÿÿOggS") + 4);
if (!trackUri.empty())
{
std::string metadata = DownloadSpotifyUrl("api.spotify.com", "/v1/tracks/"
+ trackUri.substr(trackUri.find("spotify:track:") + 14), authToken);
songInfo.title = strtok((char*)(metadata.substr(metadata.find("is_local") + 55)).c_str(), "\"");
songInfo.artist = strtok((char*)(metadata.substr(metadata.find("name") + 9)).c_str(), "\"");
songInfo.album = strtok((char*)(metadata.substr(metadata.find(albumSearchPattern) + 404)).c_str(), "\"");
songInfo.cover = strtok((char*)(metadata.substr(metadata.find("height") + 30)).c_str(), "\"");
/*std::cout << "<> <> <> <> <> <> <> <> <> <> <> <> <> <>" << std::endl;
std::cout << metadata << std::endl;
std::cout << "<> <> <> <> <> <> <> <> <> <> <> <> <> <>" << std::endl;
std::cout << "=========================================" << std::endl;
std::cout << "title: " << songInfo.title << std::endl;
std::cout << "artist: " << songInfo.artist << std::endl;
std::cout << "album: " << songInfo.album << std::endl;
std::cout << "title: " << songInfo.cover << std::endl;
std::cout << "=========================================" << std::endl;*/
std::wstring tempDirArtist = Utf8ToUtf16(songInfo.artist);
RemoveForbiddenCharW(&tempDirArtist);
songDir = songDirRoot;
if (!CreateDirectoryW(songDir.c_str(), NULL) && ERROR_ALREADY_EXISTS != GetLastError())
std::cout << "Couldn't create main downloads directory!" << std::endl;
if (CreateDirectoryW(std::wstring(songDir + L"\\" + tempDirArtist).c_str(), NULL)
|| ERROR_ALREADY_EXISTS == GetLastError())
{
std::wstring tempDirAlbum = Utf8ToUtf16(songInfo.album);
RemoveForbiddenCharW(&tempDirAlbum);
if (CreateDirectoryW(std::wstring(songDir + L"\\" + tempDirArtist + std::wstring(L"\\")
+ tempDirAlbum).c_str(), NULL) || ERROR_ALREADY_EXISTS == GetLastError())
{
songDir += L"\\" + tempDirArtist + std::wstring(L"\\") + tempDirAlbum;
std::wstring tempDirSong = Utf8ToUtf16(songInfo.title);
RemoveForbiddenCharW(&tempDirSong);
std::ofstream songFileOut(songDir + L".\\" + tempDirArtist + L" - " + tempDirSong + L".ogg",
std::ios_base::binary);
songFileOut.write(songStr.c_str(), songStr.size());
songFileOut.close();
std::cout << "Finished downloading: " << songInfo.artist << " - \"" << songInfo.title << "\"!" << std::endl;
return;
}
else
{
std::cout << "Couldn't create album directory!" << std::endl;
}
}
else
{
std::cout << "Couldn't create artist directory!" << std::endl;
}
std::cout << "Could not finish downloading song!" << std::endl;
}
}
std::string GetLastErrorAsString()
{
//Get the error message, if any.
DWORD errorMessageID = ::GetLastError();
if (errorMessageID == 0)
return std::string(); //No error message has been recorded
LPSTR messageBuffer = nullptr;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, errorMessageID, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL);
std::string message(messageBuffer, size);
//Free the buffer.
LocalFree(messageBuffer);
return message;
}
std::string Utils::DownloadSpotifyUrl(std::string host, std::string path, std::string authToken)
{
std::string response;
std::string authHeader = (authToken.empty()) ? "" : "Authorization: Bearer " + authToken;
std::string userAgent = "Spotify/11" + std::to_string(spotifyVer) + std::string("00")
+ std::to_string(spotifyVerEnd) + std::string(" Win32/Windows 10 (10.0.19042; x64)");
HINTERNET hSession, hConnect, hRequest;
BOOL bRequestSent;
const int bufferSize = 1024;
hSession = InternetOpenA(userAgent.c_str(), INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, 0);
if (hSession == NULL)
return "Error: Could not initialize request!";
hConnect = InternetConnectA(hSession, host.c_str(), 80, NULL, NULL, INTERNET_SERVICE_HTTP, 0,
NULL);
if (hConnect == NULL)
return "Error: Could not create connect!";
hRequest = HttpOpenRequestA(hConnect, "GET", path.c_str(), NULL, NULL, NULL, INTERNET_FLAG_NO_AUTH, 0);
if (hRequest == NULL)
return "Error: Could not create open request!";
HttpAddRequestHeadersA(hRequest, authHeader.c_str(), -1, HTTP_ADDREQ_FLAG_ADD | HTTP_ADDREQ_FLAG_REPLACE);
bRequestSent = HttpSendRequestA(hRequest, NULL, 0, NULL, 0);
if (!bRequestSent)
return "Error: Could not send request!";
char tmpBuffer[bufferSize];
BOOL canRead = true;
DWORD bytesRead = -1;
while (InternetReadFile(hRequest, tmpBuffer, bufferSize, &bytesRead) && bytesRead)
response.append(tmpBuffer, bytesRead);
InternetCloseHandle(hRequest);
return response;
}
std::string Utils::DownloadUrlOld(std::string host, std::string path, std::string authToken)
{
std::string authHeader;
std::string userAgent = "Spotify/11" + std::to_string(spotifyVer) + std::string("00")
+ std::to_string(spotifyVerEnd) + std::string(" Win32/Windows 10 (10.0.19042; x64)");
HINTERNET hInternet = InternetOpenA(userAgent.c_str(), INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, 0);
HINTERNET hConnect;
HINTERNET hRequest;
BOOL bRequestSent;
authHeader = "Authorization: Bearer " + authToken;
if (hInternet == NULL)
return "Error: Could not initialize request!";
hConnect = InternetConnectA(hInternet, host.c_str(), 80, NULL, NULL, INTERNET_SERVICE_HTTP, 0, NULL);
if (hConnect == NULL)
return "Error: Could not create connect!";
hRequest = HttpOpenRequestA(hConnect, "GET", path.c_str(), NULL, NULL, NULL, INTERNET_FLAG_NO_AUTH, 0);
if (hRequest == NULL)
return "Error: Could not create open request!";
HttpAddRequestHeadersA(hRequest, authHeader.c_str(), -1, HTTP_ADDREQ_FLAG_ADD | HTTP_ADDREQ_FLAG_REPLACE);
bRequestSent = HttpSendRequestA(hRequest, NULL, 0, NULL, 0);
if (!bRequestSent)
return "Error: Could not send request!";
std::string response;
const int bufferSize = 1024;
char tmpBuffer[bufferSize];
BOOL canRead = true;
DWORD bytesRead = -1;
while (canRead && bytesRead != 0)
{
canRead = InternetReadFile(hRequest, tmpBuffer, bufferSize, &bytesRead);
response.append(tmpBuffer, bytesRead);
}
return response;
}
bool Utils::BadPtr(void* ptr)
{
MEMORY_BASIC_INFORMATION mbi = { 0 };
if (VirtualQuery(ptr, &mbi, sizeof(mbi)))
{
DWORD mask = (PAGE_READONLY | PAGE_READWRITE | PAGE_WRITECOPY | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE
| PAGE_EXECUTE_WRITECOPY);
bool b = !(mbi.Protect & mask);
if (mbi.Protect & (PAGE_GUARD | PAGE_NOACCESS))
b = true;
return b;
}
return true;
}

View File

@ -7,5 +7,12 @@ public:
static char* TrampHook32(char* src, char* dst, const intptr_t len);
static int GetSpotifyVersion();
static std::string HexString(BYTE* data, int len);
static void RemoveForbiddenChar(std::string* str);
static void RemoveForbiddenCharW(std::wstring* str);
static std::wstring Utf8ToUtf16(const std::string& str);
static void DownloadSong(std::string fileId, std::string fileUri, std::string key, std::string authToken);
static std::string DownloadSpotifyUrl(std::string host, std::string path, std::string authToken);
static std::string DownloadUrlOld(std::string host, std::string path, std::string authToken);
static bool BadPtr(void* ptr);
};

568
SpotifyKeyDumper/aes.cpp Normal file
View File

@ -0,0 +1,568 @@
/*
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include "pch.h"
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; ; ++round)
{
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// Add round key to last round
AddRoundKey(Nr, state, RoundKey);
}
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = (Nr - 1); ; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uint8_t buffer[AES_BLOCKLEN];
unsigned i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will overflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)

88
SpotifyKeyDumper/aes.h Normal file
View File

@ -0,0 +1,88 @@
#ifndef _AES_H_
#define _AES_H_
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
#define AES128 1
//#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif // _AES_H_

12
SpotifyKeyDumper/aes.hpp Normal file
View File

@ -0,0 +1,12 @@
#ifndef _AES_HPP_
#define _AES_HPP_
#ifndef __cplusplus
#error Do not include the hpp header in a c project!
#endif //__cplusplus
extern "C" {
#include "aes.h"
}
#endif //_AES_HPP_

View File

@ -9,11 +9,18 @@
// add headers that you want to pre-compile here
#pragma comment(lib, "Version.lib")
#pragma comment(lib, "Wininet.lib")
#include <cstdint>
#include "framework.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <stdint.h>
#include <tchar.h>
#include <thread>
#include <vector>
#include <WinInet.h>
#endif //PCH_H

View File

@ -1,8 +1,9 @@
#include <iostream>
#include <sstream>
#include <Windows.h>
#include <TlHelp32.h>
static const char* VERSION = "1.0";
static const char* VERSION = "1.0.1";
static const char* DLL_FILE_PATH = "SpotifyKeyDumper.dll";
static const wchar_t* PROC_NAME = L"Spotify.exe";
@ -39,7 +40,16 @@ void StartDllInjection()
{
const char* dllPath = DLL_FILE_PATH;
const wchar_t* procName = PROC_NAME;
DWORD procId = 0;
DWORD procId = GetProcId(procName);
if (procId)
{
std::wstring procNameW = std::wstring(procName);
MessageBox(NULL, std::wstring(procNameW + std::wstring(L" has already been detected!\n\n"
"Please launch this before ") + procNameW).c_str(), NULL, MB_OK | MB_ICONERROR);
//return;
}
while (!procId)
{