FasTC/Base/include/VectorBase.h

299 lines
8.6 KiB
C
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2012 Pavel Krajcevski
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source
* distribution.
*
******************************************************************************/
#ifndef BASE_INCLUDE_VECTORBASE_H_
#define BASE_INCLUDE_VECTORBASE_H_
// !FIXME! For sqrt function. This increases compilation time by a LOT
// but I couldn't guarantee any faster general-purpose implementation
#include <cmath>
namespace FasTC {
enum EVectorType {
eVectorType_Scalar,
eVectorType_Vector,
eVectorType_Matrix
};
template <typename T, const int N>
class VectorBase {
protected:
// Vector representation
T vec[N];
public:
typedef T ScalarType;
VectorBase() { }
VectorBase(const VectorBase<T, N> &other) {
for(int i = 0; i < N; i++) vec[i] = other[i];
}
2014-02-17 00:29:08 +01:00
explicit VectorBase(const T *_vec) {
for(int i = 0; i < N; i++) {
vec[i] = _vec[i];
}
}
static const int Size = N;
// Accessors
T &operator()(int idx) { return vec[idx]; }
T &operator[](int idx) { return vec[idx]; }
const T &operator()(int idx) const { return vec[idx]; }
const T &operator[](int idx) const { return vec[idx]; }
// Allow casts to the respective array representation...
2014-02-16 23:17:25 +01:00
operator const T *() const { return vec; }
VectorBase<T, N> &operator=(const T *v) {
for(int i = 0; i < N; i++)
vec[i] = v[i];
return *this;
}
// Allows casting to other vector types if the underlying type system does as well...
template<typename _T>
operator VectorBase<_T, N>() const {
2014-02-16 23:17:25 +01:00
VectorBase<_T, N> ret;
for(int i = 0; i < N; i++) {
ret[i] = static_cast<_T>(vec[i]);
}
return ret;
}
// Vector operations
template<typename _T>
T Dot(const VectorBase<_T, N> &v) const {
T sum = 0;
for(int i = 0; i < N; i++)
sum += vec[i] * v[i];
return sum;
}
T LengthSq() const { return this->Dot(*this); }
T Length() const { return sqrt(LengthSq()); }
2014-02-16 18:30:37 +01:00
void Normalize() {
T len = Length();
for(int i = 0; i < N; i++) {
vec[i] /= len;
}
}
};
// Operators
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne VectorAddition(const VectorTypeOne &v1,
const VectorTypeTwo &v2) {
VectorTypeOne a(v1);
for(int i = 0; i < VectorTypeOne::Size; i++) {
a(i) += v2(i);
}
return a;
}
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne operator+(const VectorTypeOne &v1,
const VectorTypeTwo &v2) {
return VectorAddition(v1, v2);
}
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne &operator+=(VectorTypeOne &v1,
const VectorTypeTwo &v2) {
return v1 = VectorAddition(v1, v2);
}
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne VectorSubtraction(const VectorTypeOne &v1,
const VectorTypeTwo &v2) {
VectorTypeOne a(v1);
for(int i = 0; i < VectorTypeOne::Size; i++) {
a(i) -= v2(i);
}
return a;
}
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne operator-(const VectorTypeOne &v1,
const VectorTypeTwo &v2) {
return VectorSubtraction(v1, v2);
}
template<typename VectorTypeOne, typename VectorTypeTwo>
static inline VectorTypeOne &operator-=(VectorTypeOne &v1,
const VectorTypeTwo &v2) {
return v1 = VectorSubtraction(v1, v2);
}
template<typename T>
class VectorTraits {
public:
static const EVectorType kVectorType = eVectorType_Scalar;
};
template<typename T, const int N>
class VectorTraits<VectorBase<T, N> > {
public:
static const EVectorType kVectorType = eVectorType_Vector;
};
#define REGISTER_VECTOR_TYPE(TYPE) \
template<> \
class VectorTraits< TYPE > { \
public: \
static const EVectorType kVectorType = eVectorType_Vector; \
}
#define REGISTER_ONE_TEMPLATE_VECTOR_TYPE(TYPE) \
template<typename T> \
class VectorTraits< TYPE <T> > { \
public: \
static const EVectorType kVectorType = eVectorType_Vector; \
}
template<typename VectorType, typename ScalarType>
static inline VectorType ScalarMultiply(const VectorType &v, const ScalarType &s) {
VectorType a(v);
for(int i = 0; i < VectorType::Size; i++)
a(i) = static_cast<typename VectorType::ScalarType>(a(i) * s);
return a;
}
template<
EVectorType kVectorTypeOne,
EVectorType kVectorTypeTwo,
typename TypeOne,
typename TypeTwo>
class MultSwitch {
private:
const TypeOne &m_A;
const TypeTwo &m_B;
public:
typedef TypeOne ResultType;
MultSwitch(const TypeOne &a, const TypeTwo &b)
: m_A(a), m_B(b) { }
ResultType GetMultiplication() { return m_A * m_B; }
};
template<typename TypeOne, typename TypeTwo>
class MultSwitch<
eVectorType_Scalar,
eVectorType_Vector,
TypeOne, TypeTwo> {
private:
const TypeOne &m_A;
const TypeTwo &m_B;
public:
typedef TypeTwo ResultType;
MultSwitch(const TypeOne &a, const TypeTwo &b)
: m_A(a), m_B(b) { }
ResultType GetMultiplication() { return ScalarMultiply(m_B, m_A); }
};
template<typename TypeOne, typename TypeTwo>
class MultSwitch<
eVectorType_Vector,
eVectorType_Scalar,
TypeOne, TypeTwo> {
private:
const TypeOne &m_A;
const TypeTwo &m_B;
public:
typedef TypeOne ResultType;
MultSwitch(const TypeOne &a, const TypeTwo &b)
: m_A(a), m_B(b) { }
ResultType GetMultiplication() { return ScalarMultiply(m_A, m_B); }
};
template<typename TypeOne, typename TypeTwo>
class MultSwitch<
eVectorType_Vector,
eVectorType_Vector,
TypeOne, TypeTwo> {
private:
const TypeOne &m_A;
const TypeTwo &m_B;
public:
typedef typename TypeOne::ScalarType ResultType;
MultSwitch(const TypeOne &a, const TypeTwo &b)
: m_A(a), m_B(b) { }
ResultType GetMultiplication() { return m_A.Dot(m_B); }
};
template<typename TypeOne, typename TypeTwo>
static inline
typename MultSwitch<
VectorTraits<TypeOne>::kVectorType,
VectorTraits<TypeTwo>::kVectorType,
TypeOne, TypeTwo
>::ResultType
operator*(const TypeOne &v1, const TypeTwo &v2) {
typedef MultSwitch<
VectorTraits<TypeOne>::kVectorType,
VectorTraits<TypeTwo>::kVectorType,
TypeOne, TypeTwo
> VSwitch;
return VSwitch(v1, v2).GetMultiplication();
}
template<typename VectorType, typename ScalarType>
static inline VectorType &operator*=(VectorType &v, const ScalarType &s) {
return v = v * s;
}
template<typename VectorType, typename ScalarType>
static inline VectorType ScalarDivide(const VectorType &v, const ScalarType &s) {
VectorType a(v);
for(int i = 0; i < VectorType::Size; i++)
a(i) = static_cast<typename VectorType::ScalarType>(a(i) / s);
return a;
}
template<typename TypeOne, typename TypeTwo>
static inline TypeOne operator/(const TypeOne &v1, const TypeTwo &v2) {
return ScalarDivide(v1, v2);
}
template<typename VectorType, typename ScalarType>
static inline VectorType &operator/=(VectorType &v, const ScalarType &s) {
return v = ScalarDivide(v, s);
}
};
#endif // BASE_INCLUDE_VECTORBASE_H_