/******************************************************************************* * Copyright (c) 2012 Pavel Krajcevski * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * * 3. This notice may not be removed or altered from any source * distribution. * ******************************************************************************/ #ifndef BASE_INCLUDE_VECTORBASE_H_ #define BASE_INCLUDE_VECTORBASE_H_ // !FIXME! For sqrt function. This increases compilation time by a LOT // but I couldn't guarantee any faster general-purpose implementation #include namespace FasTC { template class VectorBase { protected: // Vector representation T vec[N]; public: typedef T ScalarType; VectorBase() { } VectorBase(const VectorBase &other) { for(int i = 0; i < N; i++) vec[i] = other[i]; } explicit VectorBase(T *_vec) { for(int i = 0; i < N; i++) { vec[i] = _vec[i]; } } static const int Size = N; // Accessors T &operator()(int idx) { return vec[idx]; } T &operator[](int idx) { return vec[idx]; } const T &operator()(int idx) const { return vec[idx]; } const T &operator[](int idx) const { return vec[idx]; } // Allow casts to the respective array representation... operator const T *() const { return vec; } VectorBase &operator=(const T *v) { for(int i = 0; i < N; i++) vec[i] = v[i]; return *this; } // Allows casting to other vector types if the underlying type system does as well... template operator VectorBase<_T, N>() const { VectorBase<_T, N> ret; for(int i = 0; i < N; i++) { ret[i] = static_cast<_T>(vec[i]); } return ret; } // Vector operations template T Dot(const VectorBase<_T, N> &v) const { T sum = 0; for(int i = 0; i < N; i++) sum += vec[i] * v[i]; return sum; } T LengthSq() const { return this->Dot(*this); } T Length() const { return sqrt(LengthSq()); } void Normalize() { T len = Length(); for(int i = 0; i < N; i++) { vec[i] /= len; } } }; // Operators template static inline VectorTypeOne VectorAddition(const VectorTypeOne &v1, const VectorTypeTwo &v2) { VectorTypeOne a; for(int i = 0; i < VectorTypeOne::Size; i++) { a(i) = v1(i) + v2(i); } return a; } template static inline VectorTypeOne operator+(const VectorTypeOne &v1, const VectorTypeTwo &v2) { return VectorAddition(v1, v2); } template static inline VectorTypeOne &operator+=(VectorTypeOne &v1, const VectorTypeTwo &v2) { return v1 = VectorAddition(v1, v2); } template static inline VectorTypeOne VectorSubtraction(const VectorTypeOne &v1, const VectorTypeTwo &v2) { VectorTypeOne a; for(int i = 0; i < VectorTypeOne::Size; i++) { a(i) = v1(i) - v2(i); } return a; } template static inline VectorTypeOne operator-(const VectorTypeOne &v1, const VectorTypeTwo &v2) { return VectorSubtraction(v1, v2); } template static inline VectorTypeOne &operator-=(VectorTypeOne &v1, const VectorTypeTwo &v2) { return v1 = VectorSubtraction(v1, v2); } template class VectorTraits { public: static const bool IsVector = false; }; template class VectorTraits > { public: static const bool IsVector = true; }; #define REGISTER_VECTOR_TYPE(TYPE) \ template<> \ class VectorTraits< TYPE > { \ public: \ static const bool IsVector = true; \ } #define REGISTER_ONE_TEMPLATE_VECTOR_TYPE(TYPE) \ template \ class VectorTraits< TYPE > { \ public: \ static const bool IsVector = true; \ } template class VectorSwitch { private: const TypeOne &m_A; const TypeTwo &m_B; public: typedef TypeOne VectorType; typedef TypeTwo ScalarType; VectorSwitch(const TypeOne &a, const TypeTwo &b) : m_A(a), m_B(b) { } const VectorType &GetVector() { return m_A; } const ScalarType &GetScalar() { return m_B; } }; template class VectorSwitch { private: const TypeOne &m_A; const TypeTwo &m_B; public: typedef TypeTwo VectorType; typedef TypeOne ScalarType; VectorSwitch(const TypeOne &a, const TypeTwo &b) : m_A(a), m_B(b) { } const VectorType &GetVector() { return m_B; } const ScalarType &GetScalar() { return m_A; } }; template static inline VectorType ScalarMultiply(const VectorType &v, const ScalarType &s) { VectorType a; for(int i = 0; i < VectorType::Size; i++) a(i) = static_cast(v(i) * s); return a; } template static inline typename VectorSwitch< VectorTraits::IsVector, TypeOne, TypeTwo >::VectorType operator*(const TypeOne &v1, const TypeTwo &v2) { typedef VectorSwitch< VectorTraits::IsVector, TypeOne, TypeTwo > VSwitch; VSwitch s(v1, v2); return ScalarMultiply(s.GetVector(), s.GetScalar()); } template static inline VectorType ScalarDivide(const VectorType &v, const ScalarType &s) { VectorType a; for(int i = 0; i < VectorType::Size; i++) a(i) = static_cast(v(i) / s); return a; } template static inline typename VectorSwitch< VectorTraits::IsVector, TypeOne, TypeTwo >::VectorType operator/(const TypeOne &v1, const TypeTwo &v2) { typedef VectorSwitch< VectorTraits::IsVector, TypeOne, TypeTwo > VSwitch; VSwitch s(v1, v2); return ScalarDivide(s.GetVector(), s.GetScalar()); } template static inline VectorType &operator*=(VectorType &v, const ScalarType &s) { return v = ScalarMultiply(v, s); } template static inline VectorType &operator/=(VectorType &v, const ScalarType &s) { return v = ScalarDivide(v, s); } }; #endif // BASE_INCLUDE_VECTORBASE_H_