/* FasTC * Copyright (c) 2013 University of North Carolina at Chapel Hill. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for educational, research, and non-profit purposes, without * fee, and without a written agreement is hereby granted, provided that the * above copyright notice, this paragraph, and the following four paragraphs * appear in all copies. * * Permission to incorporate this software into commercial products may be * obtained by contacting the authors or the Office of Technology Development * at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of * North Carolina at Chapel Hill. The software program and documentation are * supplied "as is," without any accompanying services from the University of * North Carolina at Chapel Hill or the authors. The University of North * Carolina at Chapel Hill and the authors do not warrant that the operation of * the program will be uninterrupted or error-free. The end-user understands * that the program was developed for research purposes and is advised not to * rely exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF * THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA * AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY * DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON * AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND * THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ #include "gtest/gtest.h" #include "Image.h" #include "IPixel.h" #include "Pixel.h" #include "Utils.h" #include TEST(Image, NonSpecificConstructor) { FasTC::Pixel p; FasTC::Image img (4, 4); for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { EXPECT_TRUE(img(i, j) == p); } } } TEST(Image, SpecificConstructor) { FasTC::Pixel pxs[16]; for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { pxs[j*4 + i].R() = i; pxs[j*4 + i].G() = j; } } FasTC::Image img(4, 4, pxs); for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { EXPECT_TRUE(img(i, j) == pxs[j*4 + i]); } } } TEST(Image, CopyConstructor) { FasTC::Pixel pxs[16]; for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { pxs[j*4 + i].R() = i; pxs[j*4 + i].G() = j; } } FasTC::Image img(4, 4, pxs); FasTC::Image img2(img); for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { EXPECT_TRUE(img2(i, j) == pxs[j*4 + i]); } } } TEST(Image, AssignmentOperator) { FasTC::Pixel pxs[16]; for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { pxs[j*4 + i].R() = i; pxs[j*4 + i].G() = j; } } FasTC::Image img(4, 4, pxs); FasTC::Image img2 = img; for(uint32 i = 0; i < 4; i++) { for(uint32 j = 0; j < 4; j++) { EXPECT_TRUE(img2(i, j) == pxs[j*4 + i]); } } } TEST(Image, Filter) { const uint32 w = 16; const uint32 h = 16; // Make a black and white image... FasTC::Image img(w, h); for(uint32 j = 0; j < h; j++) { for(uint32 i = 0; i < w; i++) { if((i ^ j) % 2) img(i, j) = 1.0f; else img(i, j) = 0.0f; } } // Make a weird averaging kernel... FasTC::Image kernel(3, 3); kernel(0, 1) = kernel(1, 0) = kernel(1, 2) = kernel(2, 1) = 0.125f; kernel(1, 1) = 0.5f; img.Filter(kernel); for(uint32 j = 1; j < h-1; j++) { for(uint32 i = 1; i < w-1; i++) { EXPECT_NEAR(static_cast(img(i, j)), 0.5f, 0.01); } } } TEST(Image, ComputeMSSIM) { const uint32 w = 16; const uint32 h = 16; FasTC::Image img(w, h); for(uint32 j = 0; j < h; j++) { for(uint32 i = 0; i < w; i++) { img(i, j) = (static_cast(i) * static_cast(j)) / (static_cast(w) * static_cast(h)); } } double MSSIM; double SSIM = img.ComputeSSIM(&img, &MSSIM); EXPECT_EQ(SSIM, 1.0); EXPECT_EQ(MSSIM, 1.0); }