/* FasTC * Copyright (c) 2012 University of North Carolina at Chapel Hill. All rights reserved. * * Permission to use, copy, modify, and distribute this software and its documentation for educational, * research, and non-profit purposes, without fee, and without a written agreement is hereby granted, * provided that the above copyright notice, this paragraph, and the following four paragraphs appear * in all copies. * * Permission to incorporate this software into commercial products may be obtained by contacting the * authors or the Office of Technology Development at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of North Carolina at Chapel Hill. * The software program and documentation are supplied "as is," without any accompanying services from the * University of North Carolina at Chapel Hill or the authors. The University of North Carolina at Chapel Hill * and the authors do not warrant that the operation of the program will be uninterrupted or error-free. The * end-user understands that the program was developed for research purposes and is advised not to rely * exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE AUTHORS BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE * USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY * OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ // The original lisence from the code available at the following location: // http://software.intel.com/en-us/vcsource/samples/fast-texture-compression // // This code has been modified significantly from the original. //-------------------------------------------------------------------------------------- // Copyright 2011 Intel Corporation // All Rights Reserved // // Permission is granted to use, copy, distribute and prepare derivative works of this // software for any purpose and without fee, provided, that the above copyright notice // and this statement appear in all copies. Intel makes no representations about the // suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS." // INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY, // INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, // INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not // assume any responsibility for any errors which may appear in this software nor any // responsibility to update it. // //-------------------------------------------------------------------------------------- #ifndef __BC7_COMPRESSIONMODE_SIMD_H__ #define __BC7_COMPRESSIONMODE_SIMD_H__ #include "RGBAEndpoints.h" // Forward Declarations class BitStream; const int kMaxEndpoints = 3; static const int kPBits[4][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // Abstract class that outlines all of the different settings for BC7 compression modes // Note that at the moment, we only support modes 0-3, so we don't deal with alpha channels. class BC7CompressionMode { public: static const uint32 kMaxNumSubsets = 3; static const uint32 kNumModes = 8; explicit BC7CompressionMode(int mode, bool opaque = true) : m_IsOpaque(opaque), m_Attributes(&(kModeAttributes[mode])), m_RotateMode(0), m_IndexMode(0) { } ~BC7CompressionMode() { } double Compress(BitStream &stream, const int shapeIdx, const RGBACluster *clusters); // This switch controls the quality of the simulated annealing optimizer. We will not make // more than this many steps regardless of how bad the error is. Higher values will produce // better quality results but will run slower. Default is 20. static int MaxAnnealingIterations; // This is a setting static const int kMaxAnnealingIterations = 256; // This is a limit enum EPBitType { ePBitType_Shared, ePBitType_NotShared, ePBitType_None }; static struct Attributes { int modeNumber; int numPartitionBits; int numSubsets; int numBitsPerIndex; int numBitsPerAlpha; int colorChannelPrecision; int alphaChannelPrecision; bool hasRotation; bool hasIdxMode; EPBitType pbitType; } kModeAttributes[kNumModes]; static const Attributes *GetAttributesForMode(int mode) { if(mode < 0 || mode >= 8) return NULL; return &kModeAttributes[mode]; } private: const double m_IsOpaque; const Attributes *const m_Attributes; int m_RotateMode; int m_IndexMode; void SetIndexMode(int mode) { m_IndexMode = mode; } void SetRotationMode(int mode) { m_RotateMode = mode; } int GetRotationMode() const { return m_Attributes->hasRotation? m_RotateMode : 0; } int GetModeNumber() const { return m_Attributes->modeNumber; } int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; } int GetNumberOfSubsets() const { return m_Attributes->numSubsets; } int GetNumberOfBitsPerIndex(int indexMode = -1) const { if(indexMode < 0) indexMode = m_IndexMode; if(indexMode == 0) return m_Attributes->numBitsPerIndex; else return m_Attributes->numBitsPerAlpha; } int GetNumberOfBitsPerAlpha(int indexMode = -1) const { if(indexMode < 0) indexMode = m_IndexMode; if(indexMode == 0) return m_Attributes->numBitsPerAlpha; else return m_Attributes->numBitsPerIndex; } // If we handle alpha separately, then we will consider the alpha channel // to be not used whenever we do any calculations... int GetAlphaChannelPrecision() const { return m_Attributes->alphaChannelPrecision; } RGBAVector GetErrorMetric() const { const float *w = BC7C::GetErrorMetric(); switch(GetRotationMode()) { default: case 0: return RGBAVector(w[0], w[1], w[2], w[3]); case 1: return RGBAVector(w[3], w[1], w[2], w[0]); case 2: return RGBAVector(w[0], w[3], w[2], w[1]); case 3: return RGBAVector(w[0], w[1], w[3], w[2]); } } EPBitType GetPBitType() const { return m_Attributes->pbitType; } unsigned int GetQuantizationMask() const { const int maskSeed = 0x80000000; const uint32 alphaPrec = GetAlphaChannelPrecision(); if(alphaPrec > 0) { return ( (maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) | (maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) | (maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000) | (maskSeed >> (GetAlphaChannelPrecision() - 1) & 0xFF000000) ); } else { return ( ((maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) | (maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) | (maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000)) & (0x00FFFFFF) ); } } int GetNumPbitCombos() const { switch(GetPBitType()) { case ePBitType_Shared: return 2; case ePBitType_NotShared: return 4; default: case ePBitType_None: return 1; } } const int *GetPBitCombo(int idx) const { switch(GetPBitType()) { case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0]; case ePBitType_NotShared: return kPBits[idx % 4]; default: case ePBitType_None: return kPBits[0]; } } double OptimizeEndpointsForCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const; struct VisitedState { RGBAVector p1; RGBAVector p2; int pBitCombo; }; void PickBestNeighboringEndpoints( const RGBACluster &cluster, const RGBAVector &p1, const RGBAVector &p2, const int curPbitCombo, RGBAVector &np1, RGBAVector &np2, int &nPbitCombo, const VisitedState *visitedStates, int nVisited, float stepSz = 1.0f ) const; bool AcceptNewEndpointError(double newError, double oldError, float temp) const; double CompressSingleColor(const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, int &bestPbitCombo) const; double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const; double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int *alphaIndices) const; void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, int &bestPBitCombo) const; }; extern const uint32 kBC7InterpolationValues[4][16][2]; #endif // __BC7_COMPRESSIONMODE_SIMD_H__