/* FasTC * Copyright (c) 2012 University of North Carolina at Chapel Hill. All rights reserved. * * Permission to use, copy, modify, and distribute this software and its documentation for educational, * research, and non-profit purposes, without fee, and without a written agreement is hereby granted, * provided that the above copyright notice, this paragraph, and the following four paragraphs appear * in all copies. * * Permission to incorporate this software into commercial products may be obtained by contacting the * authors or the Office of Technology Development at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of North Carolina at Chapel Hill. * The software program and documentation are supplied "as is," without any accompanying services from the * University of North Carolina at Chapel Hill or the authors. The University of North Carolina at Chapel Hill * and the authors do not warrant that the operation of the program will be uninterrupted or error-free. The * end-user understands that the program was developed for research purposes and is advised not to rely * exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE AUTHORS BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE * USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY * OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ // The original lisence from the code available at the following location: // http://software.intel.com/en-us/vcsource/samples/fast-texture-compression // // This code has been modified significantly from the original. //-------------------------------------------------------------------------------------- // Copyright 2011 Intel Corporation // All Rights Reserved // // Permission is granted to use, copy, distribute and prepare derivative works of this // software for any purpose and without fee, provided, that the above copyright notice // and this statement appear in all copies. Intel makes no representations about the // suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS." // INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY, // INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, // INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not // assume any responsibility for any errors which may appear in this software nor any // responsibility to update it. // //-------------------------------------------------------------------------------------- #ifndef __BC7_COMPRESSIONMODE_H__ #define __BC7_COMPRESSIONMODE_H__ #include "TexCompTypes.h" #include "RGBAEndpointsSIMD.h" // Forward Declarations class BitStream; static const int kPBits[4][2] = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // Abstract class that outlines all of the different settings for BC7 compression modes // Note that at the moment, we only support modes 0-3, so we don't deal with alpha channels. class BC7CompressionModeSIMD { public: static const int kMaxNumSubsets = 3; static const int kNumModes = 8; enum EPBitType { ePBitType_Shared, ePBitType_NotShared, ePBitType_None }; BC7CompressionModeSIMD(int mode, double err) : m_EstimatedError(err), m_Attributes(&(kModeAttributes[mode])) { } ~BC7CompressionModeSIMD() { } static int NumUses[8]; static void ResetNumUses() { memset(NumUses, 0, sizeof(NumUses)); } double Compress(BitStream &stream, const int shapeIdx, const RGBAClusterSIMD *clusters) const; // This switch controls the quality of the simulated annealing optimizer. We will not make // more than this many steps regardless of how bad the error is. Higher values will produce // better quality results but will run slower. Default is 50. static int MaxAnnealingIterations; // This is a setting private: static struct Attributes { int modeNumber; int numPartitionBits; int numSubsets; int numBitsPerIndex; int redChannelPrecision; int greenChannelPrecision; int blueChannelPrecision; int alphaChannelPrecision; EPBitType pbitType; } kModeAttributes[kNumModes]; protected: const Attributes *const m_Attributes; int GetModeNumber() const { return m_Attributes->modeNumber; } int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; } int GetNumberOfSubsets() const { return m_Attributes->numSubsets; } int GetNumberOfBitsPerIndex() const { return m_Attributes->numBitsPerIndex; } int GetRedChannelPrecision() const { return m_Attributes->redChannelPrecision; } int GetGreenChannelPrecision() const { return m_Attributes->greenChannelPrecision; } int GetBlueChannelPrecision() const { return m_Attributes->blueChannelPrecision; } int GetAlphaChannelPrecision() const { return m_Attributes->alphaChannelPrecision; } EPBitType GetPBitType() const { return m_Attributes->pbitType; } // !SPEED! Add this to the attributes lookup table void GetQuantizationMask(__m128i &mask) const { const int maskSeed = 0x80000000; mask = _mm_set_epi32( (GetAlphaChannelPrecision() > 0)? (maskSeed >> (24 + GetAlphaChannelPrecision() - 1) & 0xFF) : 0xFF, (maskSeed >> (24 + GetBlueChannelPrecision() - 1) & 0xFF), (maskSeed >> (24 + GetGreenChannelPrecision() - 1) & 0xFF), (maskSeed >> (24 + GetRedChannelPrecision() - 1) & 0xFF) ); } int GetNumPbitCombos() const { switch(GetPBitType()) { case ePBitType_Shared: return 2; case ePBitType_NotShared: return 4; default: case ePBitType_None: return 1; } } const int *GetPBitCombo(int idx) const { switch(GetPBitType()) { case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0]; case ePBitType_NotShared: return kPBits[idx % 4]; default: case ePBitType_None: return kPBits[0]; } } double OptimizeEndpointsForCluster(const RGBAClusterSIMD &cluster, RGBAVectorSIMD &p1, RGBAVectorSIMD &p2, __m128i *bestIndices, int &bestPbitCombo) const; struct VisitedState { RGBAVectorSIMD p1; RGBAVectorSIMD p2; int pBitCombo; }; void PickBestNeighboringEndpoints( const RGBAClusterSIMD &cluster, const RGBAVectorSIMD &p1, const RGBAVectorSIMD &p2, const int curPbitCombo, RGBAVectorSIMD &np1, RGBAVectorSIMD &np2, int &nPbitCombo, const __m128 &stepVec ) const; bool AcceptNewEndpointError(float newError, float oldError, float temp) const; double CompressSingleColor(const RGBAVectorSIMD &p, RGBAVectorSIMD &p1, RGBAVectorSIMD &p2, int &bestPbitCombo) const; double CompressCluster(const RGBAClusterSIMD &cluster, RGBAVectorSIMD &p1, RGBAVectorSIMD &p2, __m128i *bestIndices, int &bestPbitCombo) const; void ClampEndpointsToGrid(RGBAVectorSIMD &p1, RGBAVectorSIMD &p2, int &bestPBitCombo) const; int GetSubsetForIndex(int idx, const int shapeIdx) const; int GetAnchorIndexForSubset(int subset, const int shapeIdx) const; double GetEstimatedError() const { return m_EstimatedError; } const double m_EstimatedError; }; extern const __m128i kBC7InterpolationValuesSIMD[4][16][2]; extern const uint32 kBC7InterpolationValuesScalar[4][16][2]; #endif // __BC7_COMPRESSIONMODE_H__