FasTC/Base/test/TestVector.cpp
2014-02-16 18:28:37 -05:00

419 lines
11 KiB
C++

/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "gtest/gtest.h"
#include "VectorBase.h"
static const float kEpsilon = 1e-6;
TEST(VectorBase, Constructors) {
FasTC::VectorBase<float, 3> v3f;
FasTC::VectorBase<double, 1> v1d;
FasTC::VectorBase<int, 7> v7i;
FasTC::VectorBase<unsigned, 16> v16u;
#define TEST_VECTOR_COPY_CONS(v, t, n) \
do { \
FasTC::VectorBase<t, n> d##v (v); \
for(int i = 0; i < n; i++) { \
EXPECT_EQ(d##v [i], v[i]); \
} \
} while(0) \
TEST_VECTOR_COPY_CONS(v3f, float, 3);
TEST_VECTOR_COPY_CONS(v1d, double, 1);
TEST_VECTOR_COPY_CONS(v7i, int, 7);
TEST_VECTOR_COPY_CONS(v16u, unsigned, 16);
#undef TEST_VECTOR_COPY_CONS
}
TEST(VectorBase, Accessors) {
FasTC::VectorBase<float, 3> v3f;
v3f[0] = 1.0f;
v3f[1] = -2.3f;
v3f[2] = 1000;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f[i], v3f(i));
}
v3f(0) = -1.0f;
v3f(1) = 2.3f;
v3f(2) = -1000;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f(i), v3f[i]);
}
}
TEST(VectorBase, PointerConversion) {
FasTC::VectorBase<float, 3> v3f;
v3f[0] = 1.0f;
v3f[1] = -2.3f;
v3f[2] = 1000;
float cmp[3] = { 1.0f, -2.3f, 1000 };
const float *v3fp = v3f;
int result = memcmp(cmp, v3fp, 3 * sizeof(float));
EXPECT_EQ(result, 0);
cmp[0] = -1.0f;
cmp[1] = 2.3f;
cmp[2] = 1000.0f;
v3f = cmp;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f[i], cmp[i]);
}
}
TEST(VectorBase, CastVector) {
FasTC::VectorBase<float, 3> v3f;
FasTC::VectorBase<double, 3> v3d = v3f;
FasTC::VectorBase<int, 3> v3i = v3f;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3d(i), static_cast<double>(v3f(i)));
EXPECT_EQ(v3i(i), static_cast<int>(v3f(i)));
}
}
TEST(VectorBase, DotProduct) {
int iv[5] = { -2, -1, 0, 1, 2 };
FasTC::VectorBase<int, 5> v5i(iv);
unsigned uv[5] = { 1, 2, 3, 4, 5 };
FasTC::VectorBase<unsigned, 5> v5u(uv);
EXPECT_EQ(v5i.Dot(v5u), 10);
EXPECT_EQ(v5u.Dot(v5i), 10);
}
TEST(VectorBase, Length) {
int iv[5] = { 1, 2, 3, 4, 5 };
FasTC::VectorBase<int, 5> v5i (iv);
EXPECT_EQ(v5i.LengthSq(), 55);
EXPECT_EQ(v5i.Length(), 7);
float fv[6] = {1, 2, 3, 4, 5, 6};
FasTC::VectorBase<float, 6> v6f (fv);
EXPECT_EQ(v6f.LengthSq(), 91);
EXPECT_NEAR(v6f.Length(), sqrt(91.0f), kEpsilon);
}
TEST(VectorBase, Normalization) {
float fv[2] = {1, 0};
FasTC::VectorBase<float, 2> v2f (fv);
v2f.Normalize();
EXPECT_EQ(v2f[0], 1);
EXPECT_EQ(v2f[1], 0);
// Normalized vector should be sqrt(2) for each axis, although
// this can't be represented as integers...
unsigned uv[2] = {2, 2};
FasTC::VectorBase<unsigned, 2> v2u (uv);
v2u.Normalize();
EXPECT_EQ(v2u[0], 1);
EXPECT_EQ(v2u[1], 1);
const float sqrt2 = sqrt(2)/2.0f;
for(int i = 2; i < 10; i++) {
v2f[0] = static_cast<float>(i);
v2f[1] = static_cast<float>(i);
v2f.Normalize();
EXPECT_NEAR(v2f[0], sqrt2, kEpsilon);
EXPECT_NEAR(v2f[1], sqrt2, kEpsilon);
}
}
TEST(VectorBase, Scaling) {
float fv[2] = {1.0f, 3.0f};
FasTC::VectorBase<float, 2> v2f (fv);
FasTC::VectorBase<float, 2> v2fd = v2f * 3.0f;
EXPECT_NEAR(v2fd[0], 3.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], 9.0f, kEpsilon);
v2fd = -1.0 * v2f;
EXPECT_NEAR(v2fd[0], -1.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], -3.0f, kEpsilon);
v2fd = v2f / 3;
EXPECT_NEAR(v2fd[0], 1.0f / 3.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], 1.0f, kEpsilon);
}
TEST(VectorBase, Addition) {
float fv[2] = {1.1f, 3.2f};
FasTC::VectorBase<float, 2> v2f (fv);
unsigned uv[2] = {5, 2};
FasTC::VectorBase<unsigned, 2> v2u (uv);
FasTC::VectorBase<unsigned, 2> au = v2u + v2f;
EXPECT_EQ(au[0], 6);
EXPECT_EQ(au[1], 5);
FasTC::VectorBase<float, 2> af = v2f + v2u;
EXPECT_NEAR(af[0], 6.1f, kEpsilon);
EXPECT_NEAR(af[1], 5.2f, kEpsilon);
au = v2u - v2f;
EXPECT_EQ(au[0], 3);
EXPECT_EQ(au[1], 0);
af = v2f - v2u;
EXPECT_NEAR(af[0], -3.9f, kEpsilon);
EXPECT_NEAR(af[1], 1.2f, kEpsilon);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec2
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector2.h"
TEST(Vector2, BaseFunctionality) {
FasTC::Vec2f v2f;
FasTC::Vec2d v2d;
v2f = v2d;
EXPECT_NEAR(v2f[0], v2d[0], kEpsilon);
EXPECT_NEAR(v2f[1], v2d[1], kEpsilon);
}
TEST(Vector2, Accessors) {
float fv[2] = { 1.0f, 2.0f };
FasTC::Vec2f v2f (fv);
EXPECT_EQ(v2f.X(), 1.0f);
EXPECT_EQ(v2f.Y(), 2.0f);
v2f.X() = 4.0f;
v2f.Y() = 5.0f;
EXPECT_EQ(v2f.X(), 4.0f);
EXPECT_EQ(v2f.Y(), 5.0f);
}
TEST(Vector2, Addition) {
float fv[2] = { 1.0f, 2.0f };
FasTC::Vec2f v2f (fv);
double dv[2] = { 4.3, -10.2 };
FasTC::Vec2d v2d (dv);
EXPECT_NEAR((v2f + v2d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v2f + v2d).Y(), -8.2, kEpsilon);
}
TEST(Vector2, Swizzle) {
float fv[2] = {1.0f, 2.0f};
FasTC::Vec2f v;
v = fv;
EXPECT_EQ(v.XX().X(), 1.0f);
EXPECT_EQ(v.XX().Y(), 1.0f);
EXPECT_EQ(v.YY().X(), 2.0f);
EXPECT_EQ(v.YY().Y(), 2.0f);
EXPECT_EQ(v.YX().X(), 2.0f);
EXPECT_EQ(v.YX().Y(), 1.0f);
EXPECT_EQ(v.XY().X(), 1.0f);
EXPECT_EQ(v.XY().Y(), 2.0f);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec3
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector3.h"
TEST(Vector3, BaseFunctionality) {
FasTC::Vec3f vf;
FasTC::Vec3d vd;
vf = vd;
for(int i = 0; i < 3; i++) {
EXPECT_NEAR(vf[i], vd[i], kEpsilon);
}
}
TEST(Vector3, Accessors) {
float fv[3] = { 1.0f, 2.0f, 3.0f };
FasTC::Vec3f v3f (fv);
EXPECT_EQ(v3f.X(), 1.0f);
EXPECT_EQ(v3f.Y(), 2.0f);
EXPECT_EQ(v3f.Z(), 3.0f);
v3f.X() = 4.0f;
v3f.Y() = 5.0f;
v3f.Z() = 6.0f;
EXPECT_EQ(v3f.X(), 4.0f);
EXPECT_EQ(v3f.Y(), 5.0f);
EXPECT_EQ(v3f.Z(), 6.0f);
}
TEST(Vector3, Addition) {
float fv[3] = { 1.0f, 2.0f, 3.0f };
FasTC::Vec3f v3f (fv);
double dv[3] = { 4.3, -10.2, 0.0f };
FasTC::Vec3d v3d (dv);
EXPECT_NEAR((v3f + v3d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v3f + v3d).Y(), -8.2, kEpsilon);
EXPECT_NEAR((v3f + v3d).Z(), 3.0, kEpsilon);
}
TEST(Vector3, Swizzle) {
float fv[3] = {1.0f, 2.0f, 3.0f};
FasTC::Vec3f v;
v = fv;
EXPECT_EQ(v.XXX().Y(), 1.0f);
EXPECT_EQ(v.YZX().X(), 2.0f);
EXPECT_EQ(v.ZZY().Z(), 2.0f);
EXPECT_EQ(v.ZYZ().X(), 3.0f);
}
TEST(Vector3, CrossProduct) {
float fv[3] = {1.0f, 2.0f, 3.0f};
FasTC::Vec3f v1 (fv);
FasTC::Vec3f v2 = v1;
std::swap(v1.X(), v1.Z());
// Right handed coordinate system...
FasTC::Vec3f r = v1.Cross(v2);
EXPECT_NEAR(r.X(), 4.0f, kEpsilon);
EXPECT_NEAR(r.Y(), -8.0f, kEpsilon);
EXPECT_NEAR(r.Z(), 4.0f, kEpsilon);
v1.X() = v1.Y() = v2.X() = v2.Z() = 0.0f;
v1.Z() = v2.Y() = 1.0f;
r = v1.Cross(v2);
EXPECT_EQ(r.X(), -1.0f);
EXPECT_EQ(r.Y(), 0.0f);
EXPECT_EQ(r.Z(), 0.0f);
r = v2.Cross(v1);
EXPECT_EQ(r.X(), 1.0f);
EXPECT_EQ(r.Y(), 0.0f);
EXPECT_EQ(r.Z(), 0.0f);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec4
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector4.h"
TEST(Vector4, BaseFunctionality) {
FasTC::Vec4f vf;
FasTC::Vec4d vd;
vf = vd;
for(int i = 0; i < 4; i++) {
EXPECT_NEAR(vf[i], vd[i], kEpsilon);
}
}
TEST(Vector4, Accessors) {
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
FasTC::Vec4f v4f (fv);
EXPECT_EQ(v4f.X(), 1.0f);
EXPECT_EQ(v4f.Y(), 2.0f);
EXPECT_EQ(v4f.Z(), 3.0f);
EXPECT_EQ(v4f.W(), 4.0f);
v4f.X() = 5.0f;
v4f.Y() = 6.0f;
v4f.Z() = 7.0f;
v4f.W() = 8.0f;
EXPECT_EQ(v4f.X(), 5.0f);
EXPECT_EQ(v4f.Y(), 6.0f);
EXPECT_EQ(v4f.Z(), 7.0f);
EXPECT_EQ(v4f.W(), 8.0f);
}
TEST(Vector4, Addition) {
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
FasTC::Vec4f v4f (fv);
double dv[4] = { 4.3, -10.2, 0.0f, -22.0f };
FasTC::Vec4d v3d (dv);
EXPECT_NEAR((v4f + v3d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v4f + v3d).Y(), -8.2, kEpsilon);
EXPECT_NEAR((v4f + v3d).Z(), 3.0, kEpsilon);
EXPECT_NEAR((v4f + v3d).W(), -18.0, kEpsilon);
}
TEST(Vector4, Swizzle) {
float fv[4] = {1.0f, 2.0f, 3.0f, 4.0f};
FasTC::Vec4f v;
v = fv;
EXPECT_EQ(v.XXXX().Y(), 1.0f);
EXPECT_EQ(v.YZXW().X(), 2.0f);
EXPECT_EQ(v.ZWY().Z(), 2.0f);
EXPECT_EQ(v.ZZ().X(), 3.0f);
EXPECT_EQ(v.WWXY().W(), 2.0f);
}