mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2024-12-01 07:44:26 +01:00
455 lines
11 KiB
C++
455 lines
11 KiB
C++
/* FasTC
|
|
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "VectorBase.h"
|
|
|
|
static const float kEpsilon = 1e-6f;
|
|
|
|
TEST(VectorBase, Constructors) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1.1f; v3f[1] = 1.2f; v3f[2] = 1.3f;
|
|
FasTC::VectorBase<double, 1> v1d;
|
|
v1d[0] = 1.1;
|
|
FasTC::VectorBase<int, 7> v7i;
|
|
for(int i = 0; i < 7; i++)
|
|
v7i[i] = -i;
|
|
FasTC::VectorBase<unsigned, 16> v16u;
|
|
for(int i = 0; i < 7; i++)
|
|
v16u[i] = i;
|
|
|
|
#define TEST_VECTOR_COPY_CONS(v, t, n) \
|
|
do { \
|
|
FasTC::VectorBase<t, n> d##v (v); \
|
|
for(int i = 0; i < n; i++) { \
|
|
EXPECT_EQ(d##v [i], v[i]); \
|
|
} \
|
|
} while(0) \
|
|
|
|
TEST_VECTOR_COPY_CONS(v3f, float, 3);
|
|
TEST_VECTOR_COPY_CONS(v1d, double, 1);
|
|
TEST_VECTOR_COPY_CONS(v7i, int, 7);
|
|
TEST_VECTOR_COPY_CONS(v16u, unsigned, 16);
|
|
|
|
#undef TEST_VECTOR_COPY_CONS
|
|
}
|
|
|
|
TEST(VectorBase, Accessors) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1.0f;
|
|
v3f[1] = -2.3f;
|
|
v3f[2] = 1000;
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f[i], v3f(i));
|
|
}
|
|
|
|
v3f(0) = -1.0f;
|
|
v3f(1) = 2.3f;
|
|
v3f(2) = -1000;
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f(i), v3f[i]);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, PointerConversion) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1.0f;
|
|
v3f[1] = -2.3f;
|
|
v3f[2] = 1000;
|
|
|
|
float cmp[3] = { 1.0f, -2.3f, 1000 };
|
|
const float *v3fp = v3f;
|
|
int result = memcmp(cmp, v3fp, 3 * sizeof(float));
|
|
EXPECT_EQ(result, 0);
|
|
|
|
cmp[0] = -1.0f;
|
|
cmp[1] = 2.3f;
|
|
cmp[2] = 1000.0f;
|
|
v3f = cmp;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f[i], cmp[i]);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, CastVector) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1000000.0f;
|
|
v3f[1] = -2.0f;
|
|
v3f[2] = -1.1f;
|
|
|
|
FasTC::VectorBase<double, 3> v3d = v3f;
|
|
FasTC::VectorBase<int, 3> v3i = v3f;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3d(i), static_cast<double>(v3f(i)));
|
|
EXPECT_EQ(v3i(i), static_cast<int>(v3f(i)));
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, DotProduct) {
|
|
int iv[5] = { -2, -1, 0, 1, 2 };
|
|
FasTC::VectorBase<int, 5> v5i(iv);
|
|
|
|
unsigned uv[5] = { 1, 2, 3, 4, 5 };
|
|
FasTC::VectorBase<unsigned, 5> v5u(uv);
|
|
|
|
EXPECT_EQ(v5i.Dot(v5u), static_cast<int>(10));
|
|
EXPECT_EQ(v5u.Dot(v5i), static_cast<unsigned>(10));
|
|
|
|
EXPECT_EQ(v5i * v5u, 10);
|
|
EXPECT_EQ(v5u * v5i, 10);
|
|
}
|
|
|
|
TEST(VectorBase, Length) {
|
|
int iv[5] = { 1, 2, 3, 4, 5 };
|
|
FasTC::VectorBase<int, 5> v5i (iv);
|
|
|
|
EXPECT_EQ(v5i.LengthSq(), 55);
|
|
EXPECT_EQ(v5i.Length(), 7);
|
|
|
|
float fv[6] = {1, 2, 3, 4, 5, 6};
|
|
FasTC::VectorBase<float, 6> v6f (fv);
|
|
|
|
EXPECT_EQ(v6f.LengthSq(), 91);
|
|
EXPECT_NEAR(v6f.Length(), sqrt(91.0f), kEpsilon);
|
|
}
|
|
|
|
TEST(VectorBase, Normalization) {
|
|
float fv[2] = {1, 0};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
v2f.Normalize();
|
|
EXPECT_EQ(v2f[0], 1);
|
|
EXPECT_EQ(v2f[1], 0);
|
|
|
|
// Normalized vector should be sqrt(2) for each axis, although
|
|
// this can't be represented as integers...
|
|
unsigned uv[2] = {2, 2};
|
|
FasTC::VectorBase<unsigned, 2> v2u (uv);
|
|
v2u.Normalize();
|
|
EXPECT_EQ(v2u[0], 1);
|
|
EXPECT_EQ(v2u[1], 1);
|
|
|
|
const double sqrt2 = sqrt(2)/2.0f;
|
|
for(int i = 2; i < 10; i++) {
|
|
v2f[0] = static_cast<float>(i);
|
|
v2f[1] = static_cast<float>(i);
|
|
v2f.Normalize();
|
|
EXPECT_NEAR(v2f[0], sqrt2, kEpsilon);
|
|
EXPECT_NEAR(v2f[1], sqrt2, kEpsilon);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, Scaling) {
|
|
float fv[2] = {1.0f, 3.0f};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
FasTC::VectorBase<float, 2> v2fd = v2f * 3.0f;
|
|
EXPECT_NEAR(v2fd[0], 3.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], 9.0f, kEpsilon);
|
|
|
|
v2fd = -1.0 * v2f;
|
|
EXPECT_NEAR(v2fd[0], -1.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], -3.0f, kEpsilon);
|
|
|
|
v2fd = v2f / 3;
|
|
EXPECT_NEAR(v2fd[0], 1.0f / 3.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], 1.0f, kEpsilon);
|
|
|
|
unsigned uv[2] = {1, 3};
|
|
FasTC::VectorBase<unsigned, 2> v2u (uv);
|
|
FasTC::VectorBase<unsigned, 2> v2ud = v2u * 0.5;
|
|
EXPECT_EQ(v2ud[0], 0);
|
|
EXPECT_EQ(v2ud[1], 1);
|
|
|
|
v2ud = v2u / 0.5f;
|
|
EXPECT_EQ(v2ud[0], 2);
|
|
EXPECT_EQ(v2ud[1], 6);
|
|
}
|
|
|
|
TEST(VectorBase, Addition) {
|
|
float fv[2] = {1.1f, 3.2f};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
|
|
int uv[2] = {5, 2};
|
|
FasTC::VectorBase<int, 2> v2u (uv);
|
|
|
|
FasTC::VectorBase<int, 2> au = v2u + v2f;
|
|
EXPECT_EQ(au[0], 6);
|
|
EXPECT_EQ(au[1], 5);
|
|
|
|
au = v2u + fv + uv;
|
|
EXPECT_EQ(au[0], 11);
|
|
EXPECT_EQ(au[1], 7);
|
|
|
|
FasTC::VectorBase<float, 2> af = v2f + v2u;
|
|
EXPECT_NEAR(af[0], 6.1f, kEpsilon);
|
|
EXPECT_NEAR(af[1], 5.2f, kEpsilon);
|
|
|
|
au = v2u - v2f;
|
|
EXPECT_EQ(au[0], 4);
|
|
EXPECT_EQ(au[1], -1);
|
|
|
|
af = v2f - v2u;
|
|
EXPECT_NEAR(af[0], -3.9f, kEpsilon);
|
|
EXPECT_NEAR(af[1], 1.2f, kEpsilon);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec2
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector2.h"
|
|
|
|
TEST(Vector2, BaseFunctionality) {
|
|
FasTC::Vec2f v2f;
|
|
FasTC::Vec2d v2d;
|
|
v2d.X() = 3.0;
|
|
v2d.Y() = -10.0;
|
|
|
|
v2f = v2d;
|
|
EXPECT_EQ(v2f[0], v2d[0]);
|
|
EXPECT_EQ(v2f[1], v2d[1]);
|
|
}
|
|
|
|
TEST(Vector2, Accessors) {
|
|
float fv[2] = { 1.0f, 2.0f };
|
|
FasTC::Vec2f v2f (fv);
|
|
EXPECT_EQ(v2f.X(), 1.0f);
|
|
EXPECT_EQ(v2f.Y(), 2.0f);
|
|
|
|
v2f.X() = 4.0f;
|
|
v2f.Y() = 5.0f;
|
|
|
|
EXPECT_EQ(v2f.X(), 4.0f);
|
|
EXPECT_EQ(v2f.Y(), 5.0f);
|
|
}
|
|
|
|
TEST(Vector2, Addition) {
|
|
float fv[2] = { 1.0f, 2.0f };
|
|
FasTC::Vec2f v2f (fv);
|
|
|
|
double dv[2] = { 4.3, -10.2 };
|
|
FasTC::Vec2d v2d (dv);
|
|
|
|
EXPECT_NEAR((v2f + v2d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v2f + v2d).Y(), -8.2, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector2, Swizzle) {
|
|
float fv[2] = {1.0f, 2.0f};
|
|
FasTC::Vec2f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XX().X(), 1.0f);
|
|
EXPECT_EQ(v.XX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YY().X(), 2.0f);
|
|
EXPECT_EQ(v.YY().Y(), 2.0f);
|
|
EXPECT_EQ(v.YX().X(), 2.0f);
|
|
EXPECT_EQ(v.YX().Y(), 1.0f);
|
|
EXPECT_EQ(v.XY().X(), 1.0f);
|
|
EXPECT_EQ(v.XY().Y(), 2.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec3
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector3.h"
|
|
|
|
TEST(Vector3, BaseFunctionality) {
|
|
FasTC::Vec3f vf;
|
|
FasTC::Vec3d vd;
|
|
vd.X() = 3.0;
|
|
vd.Y() = -10.0;
|
|
vd.Z() = 0.0;
|
|
|
|
vf = vd;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(vf[i], vd[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Vector3, Accessors) {
|
|
float fv[3] = { 1.0f, 2.0f, 3.0f };
|
|
FasTC::Vec3f v3f (fv);
|
|
EXPECT_EQ(v3f.X(), 1.0f);
|
|
EXPECT_EQ(v3f.Y(), 2.0f);
|
|
EXPECT_EQ(v3f.Z(), 3.0f);
|
|
|
|
v3f.X() = 4.0f;
|
|
v3f.Y() = 5.0f;
|
|
v3f.Z() = 6.0f;
|
|
|
|
EXPECT_EQ(v3f.X(), 4.0f);
|
|
EXPECT_EQ(v3f.Y(), 5.0f);
|
|
EXPECT_EQ(v3f.Z(), 6.0f);
|
|
}
|
|
|
|
TEST(Vector3, Addition) {
|
|
float fv[3] = { 1.0f, 2.0f, 3.0f };
|
|
FasTC::Vec3f v3f (fv);
|
|
|
|
double dv[3] = { 4.3, -10.2, 0.0f };
|
|
FasTC::Vec3d v3d (dv);
|
|
|
|
EXPECT_NEAR((v3f + v3d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v3f + v3d).Y(), -8.2, kEpsilon);
|
|
EXPECT_NEAR((v3f + v3d).Z(), 3.0, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector3, Swizzle) {
|
|
float fv[3] = {1.0f, 2.0f, 3.0f};
|
|
FasTC::Vec3f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XXX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YZX().X(), 2.0f);
|
|
EXPECT_EQ(v.ZZY().Z(), 2.0f);
|
|
EXPECT_EQ(v.ZYZ().X(), 3.0f);
|
|
}
|
|
|
|
TEST(Vector3, CrossProduct) {
|
|
float fv[3] = {1.0f, 2.0f, 3.0f};
|
|
FasTC::Vec3f v1 (fv);
|
|
FasTC::Vec3f v2 = v1;
|
|
std::swap(v1.X(), v1.Z());
|
|
|
|
// Right handed coordinate system...
|
|
FasTC::Vec3f r = v1.Cross(v2);
|
|
EXPECT_NEAR(r.X(), 4.0f, kEpsilon);
|
|
EXPECT_NEAR(r.Y(), -8.0f, kEpsilon);
|
|
EXPECT_NEAR(r.Z(), 4.0f, kEpsilon);
|
|
|
|
v1.X() = v1.Y() = v2.X() = v2.Z() = 0.0f;
|
|
v1.Z() = v2.Y() = 1.0f;
|
|
|
|
r = v1.Cross(v2);
|
|
EXPECT_EQ(r.X(), -1.0f);
|
|
EXPECT_EQ(r.Y(), 0.0f);
|
|
EXPECT_EQ(r.Z(), 0.0f);
|
|
|
|
r = v2.Cross(v1);
|
|
EXPECT_EQ(r.X(), 1.0f);
|
|
EXPECT_EQ(r.Y(), 0.0f);
|
|
EXPECT_EQ(r.Z(), 0.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec4
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector4.h"
|
|
|
|
TEST(Vector4, BaseFunctionality) {
|
|
FasTC::Vec4f vf;
|
|
FasTC::Vec4d vd;
|
|
vd.X() = 3.0;
|
|
vd.Y() = -10.0;
|
|
vd.Z() = 0.0;
|
|
vd.W() = 100000000.0;
|
|
|
|
vf = vd;
|
|
for(int i = 0; i < 4; i++) {
|
|
EXPECT_EQ(vf[i], vd[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Vector4, Accessors) {
|
|
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
|
|
FasTC::Vec4f v4f (fv);
|
|
EXPECT_EQ(v4f.X(), 1.0f);
|
|
EXPECT_EQ(v4f.Y(), 2.0f);
|
|
EXPECT_EQ(v4f.Z(), 3.0f);
|
|
EXPECT_EQ(v4f.W(), 4.0f);
|
|
|
|
v4f.X() = 5.0f;
|
|
v4f.Y() = 6.0f;
|
|
v4f.Z() = 7.0f;
|
|
v4f.W() = 8.0f;
|
|
|
|
EXPECT_EQ(v4f.X(), 5.0f);
|
|
EXPECT_EQ(v4f.Y(), 6.0f);
|
|
EXPECT_EQ(v4f.Z(), 7.0f);
|
|
EXPECT_EQ(v4f.W(), 8.0f);
|
|
}
|
|
|
|
TEST(Vector4, Addition) {
|
|
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
|
|
FasTC::Vec4f v4f (fv);
|
|
|
|
double dv[4] = { 4.3, -10.2, 0.0f, -22.0f };
|
|
FasTC::Vec4d v3d (dv);
|
|
|
|
EXPECT_NEAR((v4f + v3d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).Y(), -8.2, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).Z(), 3.0, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).W(), -18.0, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector4, Swizzle) {
|
|
float fv[4] = {1.0f, 2.0f, 3.0f, 4.0f};
|
|
FasTC::Vec4f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XXXX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YZXW().X(), 2.0f);
|
|
EXPECT_EQ(v.ZWY().Z(), 2.0f);
|
|
EXPECT_EQ(v.ZZ().X(), 3.0f);
|
|
EXPECT_EQ(v.WWXY().W(), 2.0f);
|
|
}
|