mbedtls/library/platform_util.c

509 lines
15 KiB
C
Raw Permalink Normal View History

/*
2018-04-17 16:16:30 +02:00
* Common and shared functions used by multiple modules in the Mbed TLS
* library.
*
* Copyright (C) 2018, Arm Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of Mbed TLS (https://tls.mbed.org)
*/
/*
2018-09-05 16:22:22 +02:00
* Ensure gmtime_r is available even with -std=c99; must be defined before
* config.h, which pulls in glibc's features.h. Harmless on other platforms.
*/
2018-09-05 13:27:32 +02:00
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 200112L
2018-09-05 13:27:32 +02:00
#endif
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include "mbedtls/platform_util.h"
#include "mbedtls/platform.h"
#include "mbedtls/threading.h"
#if !defined(MBEDTLS_PLATFORM_C)
#include <stdlib.h>
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
#include "mbedtls/entropy_poll.h"
#endif
#include <stddef.h>
#include <string.h>
/* Max number of loops for mbedtls_platform_random_delay. */
#define MAX_RAND_DELAY 100
/* Parameters for the linear congruential generator used as a non-cryptographic
* random number generator. The same parameters are used by e.g. ANSI C. */
#define RAND_MULTIPLIER 1103515245
#define RAND_INCREMENT 12345
#define RAND_MODULUS 0x80000000
/* The number of iterations after which the seed of the non-cryptographic
* random number generator will be changed. This is used only if the
* MBEDTLS_ENTROPY_HARDWARE_ALT option is enabled. */
#define RAND_SEED_LIFE 10000
2018-04-17 16:16:30 +02:00
#if !defined(MBEDTLS_PLATFORM_ZEROIZE_ALT)
/*
* This implementation should never be optimized out by the compiler
*
2018-04-17 16:16:30 +02:00
* This implementation for mbedtls_platform_zeroize() was inspired from Colin
* Percival's blog article at:
*
* http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
*
* It uses a volatile function pointer to the standard memset(). Because the
* pointer is volatile the compiler expects it to change at
* any time and will not optimize out the call that could potentially perform
* other operations on the input buffer instead of just setting it to 0.
* Nevertheless, as pointed out by davidtgoldblatt on Hacker News
* (refer to http://www.daemonology.net/blog/2014-09-05-erratum.html for
* details), optimizations of the following form are still possible:
*
* if( memset_func != memset )
* memset_func( buf, 0, len );
*
2018-04-17 16:16:30 +02:00
* Note that it is extremely difficult to guarantee that
* mbedtls_platform_zeroize() will not be optimized out by aggressive compilers
* in a portable way. For this reason, Mbed TLS also provides the configuration
* option MBEDTLS_PLATFORM_ZEROIZE_ALT, which allows users to configure
* mbedtls_platform_zeroize() to use a suitable implementation for their
* platform and needs.
*/
void *mbedtls_platform_memset( void *, int, size_t );
static void * (* const volatile memset_func)( void *, int, size_t ) = mbedtls_platform_memset;
void *mbedtls_platform_zeroize( void *buf, size_t len )
{
volatile size_t vlen = len;
MBEDTLS_INTERNAL_VALIDATE_RET( ( len == 0 || buf != NULL ), NULL );
if( vlen > 0 )
{
return memset_func( buf, 0, vlen );
}
else
{
mbedtls_platform_random_delay();
if( vlen == 0 && vlen == len )
{
return buf;
}
}
return NULL;
}
2018-04-17 16:16:30 +02:00
#endif /* MBEDTLS_PLATFORM_ZEROIZE_ALT */
void *mbedtls_platform_memset( void *ptr, int value, size_t num )
{
size_t i, start_offset;
volatile size_t flow_counter = 0;
volatile char *b = ptr;
char rnd_data;
start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num );
rnd_data = (char) mbedtls_platform_random_in_range( 256 );
/* Perform a memset operations with random data and start from a random
* location */
for( i = start_offset; i < num; ++i )
{
b[i] = rnd_data;
flow_counter++;
}
/* Start from a random location with target data */
for( i = start_offset; i < num; ++i )
{
b[i] = value;
flow_counter++;
}
/* Second memset operation with random data */
for( i = 0; i < start_offset; ++i )
{
b[i] = rnd_data;
flow_counter++;
}
/* Finish memset operation with correct data */
for( i = 0; i < start_offset; ++i )
{
b[i] = value;
flow_counter++;
}
/* check the correct number of iterations */
if( flow_counter == 2 * num )
{
mbedtls_platform_random_delay();
if( flow_counter == 2 * num )
{
return ptr;
}
}
return NULL;
}
void *mbedtls_platform_memcpy( void *dst, const void *src, size_t num )
{
size_t i;
volatile size_t flow_counter = 0;
if( num > 0 )
{
/* Randomize start offset. */
size_t start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num );
/* Randomize initial data to prevent leakage while copying */
uint32_t data = mbedtls_platform_random_in_range( 256 );
/* Use memset with random value at first to increase security - memset is
not normally part of the memcpy function and here can be useed
with regular, unsecured implementation */
memset( (void *) dst, data, num );
/* Make a copy starting from a random location. */
i = start_offset;
do
{
( (char*) dst )[i] = ( (char*) src )[i];
flow_counter++;
}
while( ( i = ( i + 1 ) % num ) != start_offset );
}
/* check the correct number of iterations */
if( flow_counter == num )
{
mbedtls_platform_random_delay();
if( flow_counter == num )
{
return dst;
}
}
return NULL;
}
int mbedtls_platform_memmove( void *dst, const void *src, size_t num )
{
void *ret1 = NULL;
void *ret2 = NULL;
/* The buffers can have a common part, so we cannot do a copy from a random
* location. By using a temporary buffer we can do so, but the cost of it
* is using more memory and longer transfer time. */
void *tmp = mbedtls_calloc( 1, num );
if( tmp != NULL )
{
ret1 = mbedtls_platform_memcpy( tmp, src, num );
ret2 = mbedtls_platform_memcpy( dst, tmp, num );
mbedtls_free( tmp );
if( ret1 == tmp && ret2 == dst )
{
return 0;
}
return MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
}
return MBEDTLS_ERR_PLATFORM_ALLOC_FAILED;
}
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
int mbedtls_platform_memcmp( const void *buf1, const void *buf2, size_t num )
{
return( mbedtls_platform_memequal( buf1, buf2, num ) );
}
#endif /* MBEDTLS_DEPRECATED_REMOVED */
int mbedtls_platform_memequal( const void *buf1, const void *buf2, size_t num )
{
volatile const unsigned char *A = (volatile const unsigned char *) buf1;
volatile const unsigned char *B = (volatile const unsigned char *) buf2;
volatile unsigned char diff = 0;
/* Start from a random location and check the correct number of iterations */
size_t i, flow_counter = 0;
size_t start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num );
2019-10-02 07:18:29 +02:00
for( i = start_offset; i < num; i++ )
{
unsigned char x = A[i], y = B[i];
flow_counter++;
diff |= x ^ y;
}
2019-10-02 07:18:29 +02:00
for( i = 0; i < start_offset; i++ )
{
unsigned char x = A[i], y = B[i];
flow_counter++;
diff |= x ^ y;
}
/* Return 0 only when diff is 0 and flow_counter is equal to num */
return( (int) diff | (int) ( flow_counter ^ num ) );
}
/* This function implements a non-cryptographic random number generator based
* on the linear congruential generator algorithm. Additionally, if the
* MBEDTLS_ENTROPY_HARDWARE_ALT flag is defined, the seed is set at the first
* call of this function with using a hardware random number generator and
* changed every RAND_SEED_LIFE number of iterations.
*
* The value of the returned number is in the range [0; 0xffff].
*
* Note: The range of values with a 16-bit precision is related to the modulo
* parameter of the generator and the fact that the function does not return the
* full value of the internal state of the generator.
*/
static uint32_t mbedtls_platform_random_uint16( void )
{
/* Set random_state - the first random value should not be zero. */
static uint32_t random_state = RAND_INCREMENT;
#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
static uint32_t random_seed_life = 0;
if( 0 < random_seed_life )
{
--random_seed_life;
}
else
{
size_t olen = 0;
uint32_t hw_random;
mbedtls_hardware_poll( NULL,
(unsigned char *) &hw_random, sizeof( hw_random ),
&olen );
if( olen == sizeof( hw_random ) )
{
random_state ^= hw_random;
random_seed_life = RAND_SEED_LIFE;
}
}
#endif /* MBEDTLS_ENTROPY_HARDWARE_ALT */
random_state = ( ( random_state * RAND_MULTIPLIER ) + RAND_INCREMENT ) % RAND_MODULUS;
/* Do not return the entire random_state to hide generator predictability for
* the next iteration */
return( ( random_state >> 15 ) & 0xffff );
}
uint32_t mbedtls_platform_random_uint32( void )
{
return( ( mbedtls_platform_random_uint16() << 16 ) |
mbedtls_platform_random_uint16() );
}
void mbedtls_platform_random_buf( uint8_t *buf, size_t len )
{
uint16_t val;
while( len > 1 )
{
val = mbedtls_platform_random_uint16();
buf[len-1] = (uint8_t)val;
buf[len-2] = (uint8_t)(val>>8);
len -= 2;
}
if( len == 1 )
{
buf[0] = (uint8_t)mbedtls_platform_random_uint16();
}
return;
}
uint32_t mbedtls_platform_random_in_range( uint32_t num )
{
uint32_t result;
if( num <= 1 )
{
result = 0;
}
else
{
result = mbedtls_platform_random_uint32() % num;
}
return( result );
}
void mbedtls_platform_random_delay( void )
{
#if defined(MBEDTLS_FI_COUNTERMEASURES)
uint32_t rn_1, rn_2, rn_3;
volatile size_t i = 0;
uint8_t shift;
rn_1 = mbedtls_platform_random_in_range( MAX_RAND_DELAY );
rn_2 = mbedtls_platform_random_in_range( 0xffffffff ) + 1;
rn_3 = mbedtls_platform_random_in_range( 0xffffffff ) + 1;
2019-12-05 16:32:05 +01:00
do
{
i++;
/* Dummy calculations to increase the time between iterations and
* make side channel attack more difficult by reducing predictability
* of its behaviour. */
shift = ( rn_2 & 0x07 ) + 1;
if ( i % 2 )
rn_2 = ( rn_2 >> shift ) | ( rn_2 << ( 32 - shift ) );
else
rn_3 = ( rn_3 << shift ) | ( rn_3 >> ( 32 - shift ) );
rn_2 ^= rn_3;
} while( i < rn_1 || rn_2 == 0 || rn_3 == 0 );
#endif /* MBEDTLS_FI_COUNTERMEASURES */
return;
}
#if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT)
#include <time.h>
#if !defined(_WIN32) && (defined(unix) || \
2018-09-05 13:01:57 +02:00
defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \
defined(__MACH__)))
#include <unistd.h>
#endif /* !_WIN32 && (unix || __unix || __unix__ ||
* (__APPLE__ && __MACH__)) */
#if !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
_POSIX_THREAD_SAFE_FUNCTIONS >= 20112L ) )
2018-09-05 12:43:57 +02:00
/*
* This is a convenience shorthand macro to avoid checking the long
* preprocessor conditions above. Ideally, we could expose this macro in
* platform_util.h and simply use it in platform_util.c, threading.c and
2018-09-05 12:43:57 +02:00
* threading.h. However, this macro is not part of the Mbed TLS public API, so
* we keep it private by only defining it in this file
2018-09-05 12:43:57 +02:00
*/
#if ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) )
#define PLATFORM_UTIL_USE_GMTIME
#endif /* ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) ) */
#endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
_POSIX_THREAD_SAFE_FUNCTIONS >= 20112L ) ) */
struct tm *mbedtls_platform_gmtime_r( const mbedtls_time_t *tt,
struct tm *tm_buf )
{
#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
return( ( gmtime_s( tm_buf, tt ) == 0 ) ? tm_buf : NULL );
#elif !defined(PLATFORM_UTIL_USE_GMTIME)
return( gmtime_r( tt, tm_buf ) );
#else
struct tm *lt;
#if defined(MBEDTLS_THREADING_C)
if( mbedtls_mutex_lock( &mbedtls_threading_gmtime_mutex ) != 0 )
return( NULL );
#endif /* MBEDTLS_THREADING_C */
lt = gmtime( tt );
if( lt != NULL )
{
memcpy( tm_buf, lt, sizeof( struct tm ) );
}
#if defined(MBEDTLS_THREADING_C)
if( mbedtls_mutex_unlock( &mbedtls_threading_gmtime_mutex ) != 0 )
return( NULL );
#endif /* MBEDTLS_THREADING_C */
return( ( lt == NULL ) ? NULL : tm_buf );
#endif /* _WIN32 && !EFIX64 && !EFI32 */
}
#endif /* MBEDTLS_HAVE_TIME_DATE && MBEDTLS_PLATFORM_GMTIME_R_ALT */
#if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) || defined(MBEDTLS_VALIDATE_SSL_KEYS_INTEGRITY)
uint32_t mbedtls_hash( const void *data, size_t data_len_bytes )
{
uint32_t result = 0;
size_t i;
/* data_len_bytes - only multiples of 4 are considered, rest is truncated */
for( i = 0; i < data_len_bytes >> 2; i++ )
{
result ^= ( (uint32_t*) data )[i];
}
return result;
}
#endif
unsigned char* mbedtls_platform_put_uint32_be( unsigned char *buf,
size_t num )
{
*buf++ = (unsigned char) ( num >> 24 );
*buf++ = (unsigned char) ( num >> 16 );
*buf++ = (unsigned char) ( num >> 8 );
*buf++ = (unsigned char) ( num );
return buf;
}
unsigned char* mbedtls_platform_put_uint24_be( unsigned char *buf,
size_t num )
{
*buf++ = (unsigned char) ( num >> 16 );
*buf++ = (unsigned char) ( num >> 8 );
*buf++ = (unsigned char) ( num );
return buf;
}
unsigned char* mbedtls_platform_put_uint16_be( unsigned char *buf,
size_t num )
{
*buf++ = (unsigned char) ( num >> 8 );
*buf++ = (unsigned char) ( num );
return buf;
}
size_t mbedtls_platform_get_uint32_be( const unsigned char *buf )
{
return ( ( (unsigned int) buf[0] << 24 ) |
( (unsigned int) buf[1] << 16 ) |
( (unsigned int) buf[2] << 8 ) |
( (unsigned int) buf[3] ) );
}
size_t mbedtls_platform_get_uint24_be( const unsigned char *buf )
{
return ( ( buf[0] << 16 ) |
( buf[1] << 8) |
( buf[2] ) );
}
size_t mbedtls_platform_get_uint16_be( const unsigned char *buf )
{
return ( ( buf[0] << 8 ) |
( buf[1] ) );
}