mbedtls/tests/suites/test_suite_psa_crypto.function

3498 lines
126 KiB
Plaintext
Raw Normal View History

/* BEGIN_HEADER */
#include <stdint.h>
#if defined(MBEDTLS_PSA_CRYPTO_SPM)
#include "spm/psa_defs.h"
#endif
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#include "mbedtls/oid.h"
#include "psa/crypto.h"
2018-07-12 17:24:54 +02:00
#define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) )
#if(UINT32_MAX > SIZE_MAX)
#define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) ( ( x ) <= SIZE_MAX )
#else
#define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) 1
#endif
/** An invalid export length that will never be set by psa_export_key(). */
static const size_t INVALID_EXPORT_LENGTH = ~0U;
2018-08-14 15:17:54 +02:00
/** Test if a buffer contains a constant byte value.
*
* `mem_is_char(buffer, c, size)` is true after `memset(buffer, c, size)`.
*
* \param buffer Pointer to the beginning of the buffer.
2018-08-14 15:17:54 +02:00
* \param c Expected value of every byte.
* \param size Size of the buffer in bytes.
*
* \return 1 if the buffer is all-bits-zero.
* \return 0 if there is at least one nonzero byte.
*/
2018-08-14 15:17:54 +02:00
static int mem_is_char( void *buffer, unsigned char c, size_t size )
{
size_t i;
for( i = 0; i < size; i++ )
{
2018-08-14 15:17:54 +02:00
if( ( (unsigned char *) buffer )[i] != c )
return( 0 );
}
return( 1 );
}
/* Write the ASN.1 INTEGER with the value 2^(bits-1)+x backwards from *p. */
static int asn1_write_10x( unsigned char **p,
unsigned char *start,
size_t bits,
unsigned char x )
{
int ret;
int len = bits / 8 + 1;
if( bits == 0 )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( bits <= 8 && x >= 1 << ( bits - 1 ) )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( *p < start || *p - start < (ptrdiff_t) len )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
*p -= len;
( *p )[len-1] = x;
if( bits % 8 == 0 )
( *p )[1] |= 1;
else
( *p )[0] |= 1 << ( bits % 8 );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start,
MBEDTLS_ASN1_INTEGER ) );
return( len );
}
static int construct_fake_rsa_key( unsigned char *buffer,
size_t buffer_size,
unsigned char **p,
size_t bits,
int keypair )
{
size_t half_bits = ( bits + 1 ) / 2;
int ret;
int len = 0;
/* Construct something that looks like a DER encoding of
* as defined by PKCS#1 v2.2 (RFC 8017) section A.1.2:
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* otherPrimeInfos OtherPrimeInfos OPTIONAL
* }
* Or, for a public key, the same structure with only
* version, modulus and publicExponent.
*/
*p = buffer + buffer_size;
if( keypair )
{
MBEDTLS_ASN1_CHK_ADD( len, /* pq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dp */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* q */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* p != q to pass mbedtls sanity checks */
asn1_write_10x( p, buffer, half_bits, 3 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* d */
asn1_write_10x( p, buffer, bits, 1 ) );
}
MBEDTLS_ASN1_CHK_ADD( len, /* e = 65537 */
asn1_write_10x( p, buffer, 17, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* n */
asn1_write_10x( p, buffer, bits, 1 ) );
if( keypair )
MBEDTLS_ASN1_CHK_ADD( len, /* version = 0 */
mbedtls_asn1_write_int( p, buffer, 0 ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, buffer, len ) );
{
const unsigned char tag =
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, buffer, tag ) );
}
return( len );
}
static int exercise_mac_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_mac_operation_t operation;
const unsigned char input[] = "foo";
unsigned char mac[PSA_MAC_MAX_SIZE] = {0};
size_t mac_length = sizeof( mac );
if( usage & PSA_KEY_USAGE_SIGN )
{
TEST_ASSERT( psa_mac_sign_setup( &operation,
key, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_sign_finish( &operation,
mac, sizeof( mac ),
&mac_length ) == PSA_SUCCESS );
}
if( usage & PSA_KEY_USAGE_VERIFY )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_ASSERT( psa_mac_verify_setup( &operation,
key, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_verify_finish( &operation,
mac,
mac_length ) == verify_status );
}
return( 1 );
exit:
psa_mac_abort( &operation );
return( 0 );
}
static int exercise_cipher_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_cipher_operation_t operation;
unsigned char iv[16] = {0};
size_t iv_length = sizeof( iv );
const unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[32] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
unsigned char decrypted[sizeof( ciphertext )];
size_t part_length;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
TEST_ASSERT( psa_cipher_encrypt_setup( &operation,
key, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_generate_iv( &operation,
iv, sizeof( iv ),
&iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_finish( &operation,
ciphertext + ciphertext_length,
sizeof( ciphertext ) - ciphertext_length,
&part_length ) == PSA_SUCCESS );
ciphertext_length += part_length;
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status;
psa_key_type_t type = PSA_KEY_TYPE_NONE;
if( ! ( usage & PSA_KEY_USAGE_ENCRYPT ) )
{
size_t bits;
TEST_ASSERT( psa_get_key_information( key, &type, &bits ) );
iv_length = PSA_BLOCK_CIPHER_BLOCK_SIZE( type );
}
TEST_ASSERT( psa_cipher_decrypt_setup( &operation,
key, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation,
ciphertext, ciphertext_length,
decrypted, sizeof( decrypted ),
&part_length ) == PSA_SUCCESS );
status = psa_cipher_finish( &operation,
decrypted + part_length,
sizeof( decrypted ) - part_length,
&part_length );
/* For a stream cipher, all inputs are valid. For a block cipher,
* if the input is some aribtrary data rather than an actual
ciphertext, a padding error is likely. */
if( ( usage & PSA_KEY_USAGE_ENCRYPT ) ||
PSA_BLOCK_CIPHER_BLOCK_SIZE( type ) == 1 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INVALID_PADDING );
}
return( 1 );
exit:
psa_cipher_abort( &operation );
return( 0 );
}
static int exercise_aead_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char nonce[16] = {0};
size_t nonce_length = sizeof( nonce );
unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[48] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = sizeof( ciphertext );
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
TEST_ASSERT( psa_aead_encrypt( key, alg,
nonce, nonce_length,
NULL, 0,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) == PSA_SUCCESS );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_ENCRYPT ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_ASSERT( psa_aead_decrypt( key, alg,
nonce, nonce_length,
NULL, 0,
ciphertext, ciphertext_length,
plaintext, sizeof( plaintext ),
&plaintext_length ) == verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_signature_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
size_t payload_length = 16;
unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length = sizeof( signature );
if( usage & PSA_KEY_USAGE_SIGN )
{
/* Some algorithms require the payload to have the size of
* the hash encoded in the algorithm. Use this input size
* even for algorithms that allow other input sizes. */
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
if( hash_alg != 0 )
payload_length = PSA_HASH_SIZE( hash_alg );
TEST_ASSERT( psa_asymmetric_sign( key, alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length ) == PSA_SUCCESS );
}
if( usage & PSA_KEY_USAGE_VERIFY )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_ASSERT( psa_asymmetric_verify( key, alg,
payload, payload_length,
signature, signature_length ) ==
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_asymmetric_encryption_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char plaintext[256] = "Hello, world...";
unsigned char ciphertext[256] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = 16;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
TEST_ASSERT(
psa_asymmetric_encrypt( key, alg,
plaintext, plaintext_length,
NULL, 0,
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) == PSA_SUCCESS );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status =
psa_asymmetric_decrypt( key, alg,
ciphertext, ciphertext_length,
NULL, 0,
plaintext, sizeof( plaintext ),
&plaintext_length );
TEST_ASSERT( status == PSA_SUCCESS ||
( ( usage & PSA_KEY_USAGE_ENCRYPT ) == 0 &&
( status == PSA_ERROR_INVALID_ARGUMENT ||
status == PSA_ERROR_INVALID_PADDING ) ) );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_key_derivation_key( psa_key_slot_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char label[16] = "This is a label.";
size_t label_length = sizeof( label );
unsigned char seed[16] = "abcdefghijklmnop";
size_t seed_length = sizeof( seed );
unsigned char output[1];
if( usage & PSA_KEY_USAGE_DERIVE )
{
TEST_ASSERT( psa_key_derivation( &generator,
key, alg,
label, label_length,
seed, seed_length,
sizeof( output ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_read( &generator,
output,
sizeof( output ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS );
}
return( 1 );
exit:
return( 0 );
}
static int is_oid_of_key_type( psa_key_type_t type,
const uint8_t *oid, size_t oid_length )
{
const uint8_t *expected_oid = NULL;
size_t expected_oid_length = 0;
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( type ) )
{
expected_oid = (uint8_t *) MBEDTLS_OID_PKCS1_RSA;
expected_oid_length = sizeof( MBEDTLS_OID_PKCS1_RSA ) - 1;
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( type ) )
{
expected_oid = (uint8_t *) MBEDTLS_OID_EC_ALG_UNRESTRICTED;
expected_oid_length = sizeof( MBEDTLS_OID_EC_ALG_UNRESTRICTED ) - 1;
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"OID not known for key type=0x%08lx",
(unsigned long) type );
test_fail( message, __LINE__, __FILE__ );
return( 0 );
}
ASSERT_COMPARE( expected_oid, expected_oid_length, oid, oid_length );
return( 1 );
exit:
return( 0 );
}
static int asn1_skip_integer( unsigned char **p, const unsigned char *end,
size_t min_bits, size_t max_bits,
int must_be_odd )
{
size_t len;
size_t actual_bits;
unsigned char msb;
TEST_ASSERT( mbedtls_asn1_get_tag( p, end, &len,
MBEDTLS_ASN1_INTEGER ) == 0 );
/* Tolerate a slight departure from DER encoding:
* - 0 may be represented by an empty string or a 1-byte string.
* - The sign bit may be used as a value bit. */
if( ( len == 1 && ( *p )[0] == 0 ) ||
( len > 1 && ( *p )[0] == 0 && ( ( *p )[1] & 0x80 ) != 0 ) )
{
++( *p );
--len;
}
if( min_bits == 0 && len == 0 )
return( 1 );
msb = ( *p )[0];
TEST_ASSERT( msb != 0 );
actual_bits = 8 * ( len - 1 );
while( msb != 0 )
{
msb >>= 1;
++actual_bits;
}
TEST_ASSERT( actual_bits >= min_bits );
TEST_ASSERT( actual_bits <= max_bits );
if( must_be_odd )
TEST_ASSERT( ( ( *p )[len-1] & 1 ) != 0 );
*p += len;
return( 1 );
exit:
return( 0 );
}
static int asn1_get_implicit_tag( unsigned char **p, const unsigned char *end,
size_t *len,
unsigned char n, unsigned char tag )
{
int ret;
ret = mbedtls_asn1_get_tag( p, end, len,
MBEDTLS_ASN1_CONTEXT_SPECIFIC |
MBEDTLS_ASN1_CONSTRUCTED | ( n ) );
if( ret != 0 )
return( ret );
end = *p + *len;
ret = mbedtls_asn1_get_tag( p, end, len, tag );
if( ret != 0 )
return( ret );
if( *p + *len != end )
return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
return( 0 );
}
static int exported_key_sanity_check( psa_key_type_t type, size_t bits,
uint8_t *exported, size_t exported_length )
{
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_ASSERT( exported_length == ( bits + 7 ) / 8 );
else
TEST_ASSERT( exported_length <= PSA_KEY_EXPORT_MAX_SIZE( type, bits ) );
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
{
/* Check the parity bits. */
unsigned i;
for( i = 0; i < bits / 8; i++ )
{
unsigned bit_count = 0;
unsigned m;
for( m = 1; m <= 0x100; m <<= 1 )
{
if( exported[i] & m )
++bit_count;
}
TEST_ASSERT( bit_count % 2 != 0 );
}
}
else
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
*/
TEST_ASSERT( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ) == 0 );
TEST_ASSERT( p + len == end );
if( ! asn1_skip_integer( &p, end, 0, 0, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
/* Require d to be at least half the size of n. */
if( ! asn1_skip_integer( &p, end, bits / 2, bits, 1 ) )
goto exit;
/* Require p and q to be at most half the size of n, rounded up. */
if( ! asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
TEST_ASSERT( p == end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEYPAIR( type ) )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
int version;
/* ECPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 1
* privateKey OCTET STRING,
* -- `ceiling(log_{256}(n))`-byte string, big endian,
* -- where n is the order of the curve.
* parameters ECParameters {{ NamedCurve }}, -- mandatory
* publicKey BIT STRING -- mandatory
* }
*/
TEST_ASSERT( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ) == 0 );
TEST_ASSERT( p + len == end );
TEST_ASSERT( mbedtls_asn1_get_int( &p, end, &version ) == 0 );
TEST_ASSERT( version == 1 );
TEST_ASSERT( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_OCTET_STRING ) == 0 );
/* Bug in Mbed TLS: the length of the octet string depends on the value */
// TEST_ASSERT( len == PSA_BITS_TO_BYTES( bits ) );
p += len;
TEST_ASSERT( asn1_get_implicit_tag( &p, end, &len, 0,
MBEDTLS_ASN1_OID ) == 0 );
p += len;
2018-08-13 17:24:59 +02:00
/* publicKey: ECPoint in uncompressed representation (as below) */
TEST_ASSERT( asn1_get_implicit_tag( &p, end, &len, 1,
MBEDTLS_ASN1_BIT_STRING ) == 0 );
TEST_ASSERT( p + len == end );
TEST_ASSERT( p[0] == 0 ); /* 0 unused bits in the bit string */
++p;
TEST_ASSERT( p + 1 + 2 * PSA_BITS_TO_BYTES( bits ) == end );
TEST_ASSERT( p[0] == 4 );
}
else
#endif /* MBEDTLS_ECP_C */
if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
mbedtls_asn1_buf alg;
mbedtls_asn1_buf params;
mbedtls_asn1_bitstring bitstring;
/* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING }
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL }
*/
TEST_ASSERT( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ) == 0 );
TEST_ASSERT( p + len == end );
TEST_ASSERT( mbedtls_asn1_get_alg( &p, end, &alg, &params ) == 0 );
if( ! is_oid_of_key_type( type, alg.p, alg.len ) )
goto exit;
TEST_ASSERT( mbedtls_asn1_get_bitstring( &p, end, &bitstring ) == 0 );
TEST_ASSERT( p == end );
p = bitstring.p;
#if defined(MBEDTLS_RSA_C)
if( type == PSA_KEY_TYPE_RSA_PUBLIC_KEY )
{
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_ASSERT( bitstring.unused_bits == 0 );
TEST_ASSERT( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ) == 0 );
TEST_ASSERT( p + len == end );
if( ! asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
TEST_ASSERT( p == end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY( type ) )
{
/* ECPoint ::= ...
2018-08-13 17:24:59 +02:00
* -- first 8 bits: 0x04 (uncompressed representation);
* -- then x_P as an n-bit string, big endian;
* -- then y_P as a n-bit string, big endian,
* -- where n is the order of the curve.
*/
TEST_ASSERT( bitstring.unused_bits == 0 );
TEST_ASSERT( p + 1 + 2 * PSA_BITS_TO_BYTES( bits ) == end );
TEST_ASSERT( p[0] == 4 );
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"No sanity check for public key type=0x%08lx",
(unsigned long) type );
test_fail( message, __LINE__, __FILE__ );
return( 0 );
}
}
else
{
/* No sanity checks for other types */
}
return( 1 );
exit:
return( 0 );
}
static int exercise_export_key( psa_key_slot_t slot,
psa_key_usage_t usage )
{
psa_key_type_t type;
size_t bits;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
TEST_ASSERT( psa_get_key_information( slot, &type, &bits ) == PSA_SUCCESS );
if( ( usage & PSA_KEY_USAGE_EXPORT ) == 0 &&
! PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
{
TEST_ASSERT( psa_export_key( slot, NULL, 0, &exported_length ) ==
PSA_ERROR_NOT_PERMITTED );
return( 1 );
}
exported_size = PSA_KEY_EXPORT_MAX_SIZE( type, bits );
ASSERT_ALLOC( exported, exported_size );
TEST_ASSERT( psa_export_key( slot,
exported, exported_size,
&exported_length ) == PSA_SUCCESS );
ok = exported_key_sanity_check( type, bits, exported, exported_length );
exit:
mbedtls_free( exported );
return( ok );
}
static int exercise_export_public_key( psa_key_slot_t slot )
{
psa_key_type_t type;
psa_key_type_t public_type;
size_t bits;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
TEST_ASSERT( psa_get_key_information( slot, &type, &bits ) == PSA_SUCCESS );
if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( type ) )
{
TEST_ASSERT( psa_export_public_key( slot,
NULL, 0, &exported_length ) ==
PSA_ERROR_INVALID_ARGUMENT );
return( 1 );
}
public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR( type );
exported_size = PSA_KEY_EXPORT_MAX_SIZE( public_type, bits );
ASSERT_ALLOC( exported, exported_size );
TEST_ASSERT( psa_export_public_key( slot,
exported, exported_size,
&exported_length ) == PSA_SUCCESS );
ok = exported_key_sanity_check( public_type, bits,
exported, exported_length );
exit:
mbedtls_free( exported );
return( ok );
}
static int exercise_key( psa_key_slot_t slot,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok;
if( alg == 0 )
ok = 1; /* If no algorihm, do nothing (used for raw data "keys"). */
else if( PSA_ALG_IS_MAC( alg ) )
ok = exercise_mac_key( slot, usage, alg );
else if( PSA_ALG_IS_CIPHER( alg ) )
ok = exercise_cipher_key( slot, usage, alg );
else if( PSA_ALG_IS_AEAD( alg ) )
ok = exercise_aead_key( slot, usage, alg );
else if( PSA_ALG_IS_SIGN( alg ) )
ok = exercise_signature_key( slot, usage, alg );
else if( PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
ok = exercise_asymmetric_encryption_key( slot, usage, alg );
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
ok = exercise_key_derivation_key( slot, usage, alg );
else
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"No code to exercise alg=0x%08lx",
(unsigned long) alg );
test_fail( message, __LINE__, __FILE__ );
ok = 0;
}
ok = ok && exercise_export_key( slot, usage );
ok = ok && exercise_export_public_key( slot );
return( ok );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void init_deinit( )
{
psa_status_t status;
int i;
for( i = 0; i <= 1; i++ )
{
status = psa_crypto_init( );
TEST_ASSERT( status == PSA_SUCCESS );
status = psa_crypto_init( );
TEST_ASSERT( status == PSA_SUCCESS );
mbedtls_psa_crypto_free( );
}
}
/* END_CASE */
/* BEGIN_CASE */
void fill_slots( int max_arg )
{
/* Fill all the slots until we run out of memory or out of slots,
* or until some limit specified in the test data for the sake of
* implementations with an essentially unlimited number of slots.
* This test assumes that available slots are numbered from 1. */
psa_key_slot_t slot;
psa_key_slot_t max = 0;
psa_key_policy_t policy;
uint8_t exported[sizeof( max )];
size_t exported_size;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, 0 );
for( max = 1; max <= (size_t) max_arg; max++ )
{
status = psa_set_key_policy( max, &policy );
/* Stop filling slots if we run out of memory or out of
* available slots. */
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_MEMORY ||
status == PSA_ERROR_INVALID_ARGUMENT );
if( status != PSA_SUCCESS )
break;
status = psa_import_key( max, PSA_KEY_TYPE_RAW_DATA,
(uint8_t*) &max, sizeof( max ) );
/* Since psa_set_key_policy succeeded, we know that the slot
* number is valid. But we may legitimately run out of memory. */
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_MEMORY );
if( status != PSA_SUCCESS )
break;
}
/* `max` is now the first slot number that wasn't filled. */
max -= 1;
for( slot = 1; slot <= max; slot++ )
{
TEST_ASSERT( psa_export_key( slot,
exported, sizeof( exported ),
&exported_size ) == PSA_SUCCESS );
ASSERT_COMPARE( &slot, sizeof( slot ), exported, exported_size );
}
exit:
/* Do not destroy the keys. mbedtls_psa_crypto_free() should do it. */
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import( data_t *data, int type, int expected_status_arg )
{
int slot = 1;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
status = psa_import_key( slot, type, data->x, data->len );
TEST_ASSERT( status == expected_status );
if( status == PSA_SUCCESS )
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_rsa_made_up( int bits_arg, int keypair, int expected_status_arg )
{
int slot = 1;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
psa_key_type_t type =
keypair ? PSA_KEY_TYPE_RSA_KEYPAIR : PSA_KEY_TYPE_RSA_PUBLIC_KEY;
size_t buffer_size = /* Slight overapproximations */
keypair ? bits * 9 / 16 + 80 : bits / 8 + 20;
unsigned char *buffer = NULL;
unsigned char *p;
int ret;
size_t length;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
ASSERT_ALLOC( buffer, buffer_size );
TEST_ASSERT( ( ret = construct_fake_rsa_key( buffer, buffer_size, &p,
bits, keypair ) ) >= 0 );
length = ret;
/* Try importing the key */
status = psa_import_key( slot, type, p, length );
TEST_ASSERT( status == expected_status );
if( status == PSA_SUCCESS )
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
exit:
mbedtls_free( buffer );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export( data_t *data,
int type_arg,
int alg_arg,
int usage_arg,
int expected_bits,
int export_size_delta,
int expected_export_status_arg,
int canonical_input )
{
int slot = 1;
int slot2 = slot + 1;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
unsigned char *reexported = NULL;
size_t export_size;
size_t exported_length = INVALID_EXPORT_LENGTH;
size_t reexported_length;
psa_key_type_t got_type;
size_t got_bits;
psa_key_policy_t policy;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
export_size = (ptrdiff_t) data->len + export_size_delta;
ASSERT_ALLOC( exported, export_size );
if( ! canonical_input )
ASSERT_ALLOC( reexported, export_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage_arg, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Import the key */
TEST_ASSERT( psa_import_key( slot, type,
data->x, data->len ) == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == (size_t) expected_bits );
/* Export the key */
status = psa_export_key( slot,
exported, export_size,
&exported_length );
TEST_ASSERT( status == expected_export_status );
/* The exported length must be set by psa_export_key() to a value between 0
* and export_size. On errors, the exported length must be 0. */
TEST_ASSERT( exported_length != INVALID_EXPORT_LENGTH );
TEST_ASSERT( status == PSA_SUCCESS || exported_length == 0 );
TEST_ASSERT( exported_length <= export_size );
2018-08-14 15:17:54 +02:00
TEST_ASSERT( mem_is_char( exported + exported_length, 0,
export_size - exported_length ) );
if( status != PSA_SUCCESS )
{
TEST_ASSERT( exported_length == 0 );
goto destroy;
}
if( ! exercise_export_key( slot, usage_arg ) )
goto exit;
if( canonical_input )
ASSERT_COMPARE( data->x, data->len, exported, exported_length );
else
{
TEST_ASSERT( psa_set_key_policy( slot2, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot2, type,
exported,
exported_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_export_key( slot2,
reexported,
export_size,
&reexported_length ) == PSA_SUCCESS );
ASSERT_COMPARE( exported, exported_length,
reexported, reexported_length );
}
destroy:
/* Destroy the key */
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information(
slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT );
exit:
mbedtls_free( exported );
mbedtls_free( reexported );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export_public_key( data_t *data,
int type_arg,
int alg_arg,
int expected_bits,
int public_key_expected_length,
int expected_export_status_arg )
{
int slot = 1;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
size_t export_size;
size_t exported_length = INVALID_EXPORT_LENGTH;
psa_key_type_t got_type;
size_t got_bits;
psa_key_policy_t policy;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
export_size = (ptrdiff_t) data->len;
ASSERT_ALLOC( exported, export_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Import the key */
TEST_ASSERT( psa_import_key( slot, type,
data->x, data->len ) == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == (size_t) expected_bits );
/* Export the key */
status = psa_export_public_key( slot,
exported, export_size,
&exported_length );
TEST_ASSERT( status == expected_export_status );
TEST_ASSERT( exported_length == (size_t) public_key_expected_length );
2018-08-14 15:17:54 +02:00
TEST_ASSERT( mem_is_char( exported + exported_length, 0,
export_size - exported_length ) );
if( status != PSA_SUCCESS )
goto destroy;
destroy:
/* Destroy the key */
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information(
slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT );
exit:
mbedtls_free( exported );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_and_exercise_key( data_t *data,
int type_arg,
int bits_arg,
int alg_arg )
{
int slot = 1;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage =
( PSA_ALG_IS_MAC( alg ) || PSA_ALG_IS_SIGN( alg ) ?
( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_VERIFY :
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY ) :
PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) ||
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) ?
( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_ENCRYPT :
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT ) :
PSA_ALG_IS_KEY_DERIVATION( alg ) ? PSA_KEY_USAGE_DERIVE :
0 );
psa_key_policy_t policy;
psa_key_type_t got_type;
size_t got_bits;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Import the key */
status = psa_import_key( slot, type, data->x, data->len );
TEST_ASSERT( status == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == bits );
/* Do something with the key according to its type and permitted usage. */
if( ! exercise_key( slot, usage, alg ) )
goto exit;
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy( int usage_arg, int alg_arg )
{
int key_slot = 1;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = usage_arg;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
unsigned char key[32] = {0};
psa_key_policy_t policy_set;
psa_key_policy_t policy_get;
memset( key, 0x2a, sizeof( key ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy_set );
psa_key_policy_init( &policy_get );
psa_key_policy_set_usage( &policy_set, usage, alg );
TEST_ASSERT( psa_key_policy_get_usage( &policy_set ) == usage );
TEST_ASSERT( psa_key_policy_get_algorithm( &policy_set ) == alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy_set ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key, sizeof( key ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_policy( key_slot, &policy_get ) == PSA_SUCCESS );
TEST_ASSERT( policy_get.usage == policy_set.usage );
TEST_ASSERT( policy_get.alg == policy_set.alg );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_mac_operation_t operation;
psa_status_t status;
unsigned char mac[PSA_MAC_MAX_SIZE];
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
status = psa_mac_sign_setup( &operation, key_slot, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
psa_mac_abort( &operation );
memset( mac, 0, sizeof( mac ) );
status = psa_mac_verify_setup( &operation, key_slot, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_mac_abort( &operation );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_cipher_operation_t operation;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
status = psa_cipher_encrypt_setup( &operation, key_slot, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
psa_cipher_abort( &operation );
status = psa_cipher_decrypt_setup( &operation, key_slot, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_cipher_abort( &operation );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int nonce_length_arg,
int tag_length_arg,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_status_t status;
unsigned char nonce[16] = {0};
size_t nonce_length = nonce_length_arg;
unsigned char tag[16];
size_t tag_length = tag_length_arg;
size_t output_length;
TEST_ASSERT( nonce_length <= sizeof( nonce ) );
TEST_ASSERT( tag_length <= sizeof( tag ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
status = psa_aead_encrypt( key_slot, exercise_alg,
nonce, nonce_length,
NULL, 0,
NULL, 0,
tag, tag_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
memset( tag, 0, sizeof( tag ) );
status = psa_aead_decrypt( key_slot, exercise_alg,
nonce, nonce_length,
NULL, 0,
tag, tag_length,
NULL, 0,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_ASSERT( status == PSA_ERROR_INVALID_SIGNATURE );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encryption_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_status_t status;
size_t key_bits;
size_t buffer_length;
unsigned char *buffer = NULL;
size_t output_length;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information( key_slot,
NULL,
&key_bits ) == PSA_SUCCESS );
buffer_length = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits,
exercise_alg );
ASSERT_ALLOC( buffer, buffer_length );
status = psa_asymmetric_encrypt( key_slot, exercise_alg,
NULL, 0,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
if( buffer_length != 0 )
memset( buffer, 0, buffer_length );
status = psa_asymmetric_decrypt( key_slot, exercise_alg,
buffer, buffer_length,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_ASSERT( status == PSA_ERROR_INVALID_PADDING );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
mbedtls_free( buffer );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_signature_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_status_t status;
unsigned char payload[16] = {1};
size_t payload_length = sizeof( payload );
unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
status = psa_asymmetric_sign( key_slot, exercise_alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
memset( signature, 0, sizeof( signature ) );
status = psa_asymmetric_verify( key_slot, exercise_alg,
payload, payload_length,
signature, sizeof( signature ) );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 )
TEST_ASSERT( status == PSA_ERROR_INVALID_SIGNATURE );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
int key_slot = 1;
psa_key_policy_t policy;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
status = psa_key_derivation( &generator, key_slot,
exercise_alg,
NULL, 0,
NULL, 0,
1 );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 )
TEST_ASSERT( status == PSA_SUCCESS );
else
TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED );
exit:
psa_generator_abort( &generator );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_lifetime( int lifetime_arg )
{
int key_slot = 1;
psa_key_type_t key_type = PSA_KEY_TYPE_RAW_DATA;
unsigned char key[32] = {0};
psa_key_lifetime_t lifetime_set = lifetime_arg;
psa_key_lifetime_t lifetime_get;
memset( key, 0x2a, sizeof( key ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_set_key_lifetime( key_slot,
lifetime_set ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key, sizeof( key ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_lifetime( key_slot,
&lifetime_get ) == PSA_SUCCESS );
TEST_ASSERT( lifetime_get == lifetime_set );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_lifetime_set_fail( int key_slot_arg,
int lifetime_arg,
int expected_status_arg )
{
psa_key_slot_t key_slot = key_slot_arg;
psa_key_lifetime_t lifetime_set = lifetime_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
actual_status = psa_set_key_lifetime( key_slot, lifetime_set );
if( actual_status == PSA_SUCCESS )
actual_status = psa_set_key_lifetime( key_slot, lifetime_set );
TEST_ASSERT( expected_status == actual_status );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_setup( int alg_arg,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_hash_operation_t operation;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
status = psa_hash_setup( &operation, alg );
psa_hash_abort( &operation );
TEST_ASSERT( status == expected_status );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_finish( int alg_arg, data_t *input, data_t *expected_hash )
{
psa_algorithm_t alg = alg_arg;
unsigned char actual_hash[PSA_HASH_MAX_SIZE];
size_t actual_hash_length;
psa_hash_operation_t operation;
TEST_ASSERT( expected_hash->len == PSA_HASH_SIZE( alg ) );
TEST_ASSERT( expected_hash->len <= PSA_HASH_MAX_SIZE );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_hash != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_setup( &operation, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_update( &operation,
input->x, input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_finish( &operation,
actual_hash, sizeof( actual_hash ),
&actual_hash_length ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_hash->x, expected_hash->len,
actual_hash, actual_hash_length );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_verify( int alg_arg, data_t *input, data_t *expected_hash )
{
psa_algorithm_t alg = alg_arg;
psa_hash_operation_t operation;
TEST_ASSERT( expected_hash->len == PSA_HASH_SIZE( alg ) );
TEST_ASSERT( expected_hash->len <= PSA_HASH_MAX_SIZE );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_hash != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_setup( &operation, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_update( &operation,
input->x,
input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_verify( &operation,
expected_hash->x,
expected_hash->len ) == PSA_SUCCESS );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_mac_operation_t operation;
psa_key_policy_t policy;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY,
alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
status = psa_mac_sign_setup( &operation, key_slot, alg );
psa_mac_abort( &operation );
TEST_ASSERT( status == expected_status );
2018-08-14 15:17:54 +02:00
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_sign( int key_type_arg,
data_t *key,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation;
psa_key_policy_t policy;
/* Leave a little extra room in the output buffer. At the end of the
* test, we'll check that the implementation didn't overwrite onto
* this extra room. */
uint8_t actual_mac[PSA_MAC_MAX_SIZE + 10];
size_t mac_buffer_size =
PSA_MAC_FINAL_SIZE( key_type, PSA_BYTES_TO_BITS( key->len ), alg );
size_t mac_length = 0;
memset( actual_mac, '+', sizeof( actual_mac ) );
TEST_ASSERT( mac_buffer_size <= PSA_MAC_MAX_SIZE );
TEST_ASSERT( expected_mac->len <= mac_buffer_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
/* Calculate the MAC. */
TEST_ASSERT( psa_mac_sign_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_update( &operation,
input->x, input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_sign_finish( &operation,
actual_mac, mac_buffer_size,
&mac_length ) == PSA_SUCCESS );
/* Compare with the expected value. */
TEST_ASSERT( mac_length == expected_mac->len );
TEST_ASSERT( memcmp( actual_mac, expected_mac->x, mac_length ) == 0 );
/* Verify that the end of the buffer is untouched. */
TEST_ASSERT( mem_is_char( actual_mac + mac_length, '+',
sizeof( actual_mac ) - mac_length ) );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_verify( int key_type_arg,
data_t *key,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( expected_mac->len <= PSA_MAC_MAX_SIZE );
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_mac != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_mac->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_verify_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_destroy_key( key_slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_update( &operation,
input->x, input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_verify_finish( &operation,
expected_mac->x,
expected_mac->len ) == PSA_SUCCESS );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
status = psa_cipher_encrypt_setup( &operation, key_slot, alg );
psa_cipher_abort( &operation );
TEST_ASSERT( status == expected_status );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status_arg )
{
int key_slot = 1;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_encrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_size ) == PSA_SUCCESS );
output_buffer_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length );
total_output_length += function_output_length;
TEST_ASSERT( status == expected_status );
if( expected_status == PSA_SUCCESS )
{
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size,
data_t *expected_output )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_encrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation, input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size,
data_t *expected_output )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_decrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-03-28 00:21:33 +02:00
/* BEGIN_CASE */
void cipher_decrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status_arg )
2018-03-28 00:21:33 +02:00
{
int key_slot = 1;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
2018-03-28 00:21:33 +02:00
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
2018-03-28 00:21:33 +02:00
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
2018-03-28 00:21:33 +02:00
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
2018-03-28 00:21:33 +02:00
TEST_ASSERT( psa_cipher_decrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
2018-03-28 00:21:33 +02:00
TEST_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_size ) == PSA_SUCCESS );
2018-03-28 00:21:33 +02:00
output_buffer_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length );
total_output_length += function_output_length;
TEST_ASSERT( status == expected_status );
if( expected_status == PSA_SUCCESS )
{
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
2018-03-28 00:21:33 +02:00
exit:
mbedtls_free( output );
2018-03-28 00:21:33 +02:00
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-03-28 14:14:59 +02:00
/* BEGIN_CASE */
void cipher_verify_output( int alg_arg, int key_type_arg,
data_t *key,
data_t *input )
2018-03-28 14:14:59 +02:00
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
size_t function_output_length = 0;
psa_cipher_operation_t operation1;
psa_cipher_operation_t operation2;
psa_key_policy_t policy;
2018-03-28 14:14:59 +02:00
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_encrypt_setup( &operation1,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_decrypt_setup( &operation2,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_generate_iv( &operation1,
iv, iv_size,
&iv_length ) == PSA_SUCCESS );
output1_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output1, output1_size );
TEST_ASSERT( psa_cipher_update( &operation1, input->x, input->len,
output1, output1_size,
&output1_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length, output1_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
output2_size = output1_length;
ASSERT_ALLOC( output2, output2_size );
TEST_ASSERT( psa_cipher_set_iv( &operation2,
iv, iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation2, output1, output1_length,
output2, output2_size,
&output2_length ) == PSA_SUCCESS );
function_output_length = 0;
TEST_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation2 ) == PSA_SUCCESS );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output_multipart( int alg_arg,
int key_type_arg,
data_t *key,
data_t *input,
int first_part_size )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation1;
psa_cipher_operation_t operation2;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_encrypt_setup( &operation1,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_decrypt_setup( &operation2,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_generate_iv( &operation1,
iv, iv_size,
&iv_length ) == PSA_SUCCESS );
output1_buffer_size = (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
ASSERT_ALLOC( output1, output1_buffer_size );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation1, input->x, first_part_size,
output1, output1_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation1,
input->x + first_part_size,
input->len - first_part_size,
output1, output1_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length,
output1_buffer_size - output1_length,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
output2_buffer_size = output1_length;
ASSERT_ALLOC( output2, output2_buffer_size );
TEST_ASSERT( psa_cipher_set_iv( &operation2,
iv, iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation2, output1, first_part_size,
output2, output2_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation2,
output1 + first_part_size,
output1_length - first_part_size,
output2, output2_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation2 ) == PSA_SUCCESS );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
2018-03-28 14:14:59 +02:00
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
2018-03-28 14:14:59 +02:00
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_result_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output_data2 = NULL;
size_t output_length2 = 0;
size_t tag_length = 16;
psa_status_t expected_result = expected_result_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_encrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == expected_result );
if( PSA_SUCCESS == expected_result )
{
ASSERT_ALLOC( output_data2, output_length );
TEST_ASSERT( psa_aead_decrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
output_data, output_length,
output_data2, output_length,
&output_length2 ) == expected_result );
ASSERT_COMPARE( input_data->x, input_data->len,
output_data2, output_length2 );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_free( output_data2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_result )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( expected_result != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_result->len ) );
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT , alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_encrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x, additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_result->x, expected_result->len,
output_data, output_length );
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_data,
int expected_result_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy;
psa_status_t expected_result = expected_result_arg;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( expected_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) );
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT , alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_decrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == expected_result );
if( expected_result == PSA_SUCCESS )
ASSERT_COMPARE( expected_data->x, expected_data->len,
output_data, output_length );
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void signature_size( int type_arg,
int bits,
int alg_arg,
int expected_size_arg )
{
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
size_t actual_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( type, bits, alg );
TEST_ASSERT( actual_size == (size_t) expected_size_arg );
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void sign_deterministic( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( output_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( output_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information( slot,
NULL,
&key_bits ) == PSA_SUCCESS );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
TEST_ASSERT( psa_asymmetric_sign( slot, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) == PSA_SUCCESS );
/* Verify that the signature is what is expected. */
ASSERT_COMPARE( output_data->x, output_data->len,
signature, signature_length );
exit:
psa_destroy_key( slot );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size_arg, int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
2018-03-07 16:43:36 +01:00
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
ASSERT_ALLOC( signature, signature_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_sign( slot, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length );
TEST_ASSERT( actual_status == expected_status );
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_ASSERT( signature_length <= signature_size );
exit:
psa_destroy_key( slot );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY,
alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information( slot,
NULL,
&key_bits ) == PSA_SUCCESS );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
TEST_ASSERT( psa_asymmetric_sign( slot, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) == PSA_SUCCESS );
/* Check that the signature length looks sensible. */
TEST_ASSERT( signature_length <= signature_size );
TEST_ASSERT( signature_length > 0 );
/* Use the library to verify that the signature is correct. */
TEST_ASSERT( psa_asymmetric_verify(
slot, alg,
input_data->x, input_data->len,
signature, signature_length ) == PSA_SUCCESS );
if( input_data->len != 0 )
{
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_ASSERT( psa_asymmetric_verify(
slot, alg,
input_data->x, input_data->len,
signature,
signature_length ) == PSA_ERROR_INVALID_SIGNATURE );
}
exit:
psa_destroy_key( slot );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-03-28 00:21:33 +02:00
/* BEGIN_CASE */
void asymmetric_verify( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_policy_t policy;
TEST_ASSERT( signature_data->len <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( hash_data != NULL );
TEST_ASSERT( signature_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_asymmetric_verify( slot, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len ) == PSA_SUCCESS );
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_verify_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( hash_data != NULL );
TEST_ASSERT( signature_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_verify( slot, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len );
TEST_ASSERT( actual_status == expected_status );
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int expected_output_length_arg,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t expected_output_length = expected_output_length_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
/* Import the key */
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Determine the maximum output length */
TEST_ASSERT( psa_get_key_information( slot,
NULL,
&key_bits ) == PSA_SUCCESS );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
ASSERT_ALLOC( output, output_size );
/* Encrypt the input */
actual_status = psa_asymmetric_encrypt( slot, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
TEST_ASSERT( output_length == expected_output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_encrypt( slot, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
TEST_ASSERT( output_length == expected_output_length );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
unsigned char *output2 = NULL;
size_t output2_size;
size_t output2_length = ~0;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Determine the maximum ciphertext length */
TEST_ASSERT( psa_get_key_information( slot,
NULL,
&key_bits ) == PSA_SUCCESS );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
ASSERT_ALLOC( output, output_size );
output2_size = input_data->len;
ASSERT_ALLOC( output2, output2_size );
/* We test encryption by checking that encrypt-then-decrypt gives back
* the original plaintext because of the non-optional random
* part of encryption process which prevents using fixed vectors. */
TEST_ASSERT( psa_asymmetric_encrypt( slot, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length ) == PSA_SUCCESS );
/* We don't know what ciphertext length to expect, but check that
* it looks sensible. */
TEST_ASSERT( output_length <= output_size );
TEST_ASSERT( psa_asymmetric_decrypt( slot, alg,
output, output_length,
label->x, label->len,
output2, output2_size,
&output2_length ) == PSA_SUCCESS );
ASSERT_COMPARE( input_data->x, input_data->len,
output2, output2_length );
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_free( output2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
data_t *expected_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = ~0;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( expected_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) );
output_size = key_data->len;
ASSERT_ALLOC( output, output_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
label->x, label->len,
output,
output_size,
&output_length ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
TEST_ASSERT( psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
NULL, label->len,
output,
output_size,
&output_length ) == PSA_SUCCESS );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt_fail( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
output_size = key_data->len;
ASSERT_ALLOC( output, output_size );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
TEST_ASSERT( output_length <= output_size );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
TEST_ASSERT( output_length <= output_size );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-06-19 22:00:52 +02:00
/* BEGIN_CASE */
void derive_setup( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *salt,
data_t *label,
int requested_capacity_arg,
int expected_status_arg )
{
psa_key_slot_t slot = 1;
size_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_status_t expected_status = expected_status_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_key_derivation( &generator, slot, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ) == expected_status );
exit:
psa_generator_abort( &generator );
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-07-12 17:24:54 +02:00
/* BEGIN_CASE */
void derive_output( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int requested_capacity_arg,
data_t *expected_output1,
data_t *expected_output2 )
{
psa_key_slot_t slot = 1;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
uint8_t *expected_outputs[2] =
{expected_output1->x, expected_output2->x};
size_t output_sizes[2] =
{expected_output1->len, expected_output2->len};
size_t output_buffer_size = 0;
uint8_t *output_buffer = NULL;
size_t expected_capacity;
size_t current_capacity;
psa_key_policy_t policy;
psa_status_t status;
unsigned i;
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
if( output_sizes[i] > output_buffer_size )
output_buffer_size = output_sizes[i];
if( output_sizes[i] == 0 )
expected_outputs[i] = NULL;
}
ASSERT_ALLOC( output_buffer, output_buffer_size );
2018-07-12 17:24:54 +02:00
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, PSA_KEY_TYPE_DERIVE,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Extraction phase. */
TEST_ASSERT( psa_key_derivation( &generator, slot, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) ==
PSA_SUCCESS );
TEST_ASSERT( current_capacity == requested_capacity );
expected_capacity = requested_capacity;
/* Expansion phase. */
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
/* Read some bytes. */
status = psa_generator_read( &generator,
output_buffer, output_sizes[i] );
if( expected_capacity == 0 && output_sizes[i] == 0 )
{
/* Reading 0 bytes when 0 bytes are available can go either way. */
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_CAPACITY );
continue;
}
else if( expected_capacity == 0 ||
output_sizes[i] > expected_capacity )
{
/* Capacity exceeded. */
TEST_ASSERT( status == PSA_ERROR_INSUFFICIENT_CAPACITY );
expected_capacity = 0;
continue;
}
/* Success. Check the read data. */
TEST_ASSERT( status == PSA_SUCCESS );
if( output_sizes[i] != 0 )
TEST_ASSERT( memcmp( output_buffer, expected_outputs[i],
output_sizes[i] ) == 0 );
/* Check the generator status. */
expected_capacity -= output_sizes[i];
TEST_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) ==
PSA_SUCCESS );
TEST_ASSERT( expected_capacity == current_capacity );
}
TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS );
exit:
mbedtls_free( output_buffer );
psa_generator_abort( &generator );
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_full( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int requested_capacity_arg )
{
psa_key_slot_t slot = 1;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char output_buffer[16];
size_t expected_capacity = requested_capacity;
size_t current_capacity;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, PSA_KEY_TYPE_DERIVE,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Extraction phase. */
TEST_ASSERT( psa_key_derivation( &generator, slot, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) ==
PSA_SUCCESS );
TEST_ASSERT( current_capacity == expected_capacity );
/* Expansion phase. */
while( current_capacity > 0 )
{
size_t read_size = sizeof( output_buffer );
if( read_size > current_capacity )
read_size = current_capacity;
TEST_ASSERT( psa_generator_read( &generator,
output_buffer,
read_size ) == PSA_SUCCESS );
expected_capacity -= read_size;
TEST_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) ==
PSA_SUCCESS );
TEST_ASSERT( current_capacity == expected_capacity );
}
/* Check that the generator refuses to go over capacity. */
TEST_ASSERT( psa_generator_read( &generator,
output_buffer,
1 ) == PSA_ERROR_INSUFFICIENT_CAPACITY );
TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS );
exit:
psa_generator_abort( &generator );
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_exercise( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int derived_type_arg,
int derived_bits_arg,
int derived_usage_arg,
int derived_alg_arg )
{
psa_key_slot_t base_key = 1;
psa_key_slot_t derived_key = 2;
psa_algorithm_t alg = alg_arg;
psa_key_type_t derived_type = derived_type_arg;
size_t derived_bits = derived_bits_arg;
psa_key_usage_t derived_usage = derived_usage_arg;
psa_algorithm_t derived_alg = derived_alg_arg;
size_t capacity = PSA_BITS_TO_BYTES( derived_bits );
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_policy_t policy;
psa_key_type_t got_type;
size_t got_bits;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
TEST_ASSERT( psa_set_key_policy( base_key, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( base_key, PSA_KEY_TYPE_DERIVE,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Derive a key. */
TEST_ASSERT( psa_key_derivation( &generator, base_key, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) == PSA_SUCCESS );
psa_key_policy_set_usage( &policy, derived_usage, derived_alg );
TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_import_key( derived_key,
derived_type,
derived_bits,
&generator ) == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( derived_key,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == derived_type );
TEST_ASSERT( got_bits == derived_bits );
/* Exercise the derived key. */
if( ! exercise_key( derived_key, derived_usage, derived_alg ) )
goto exit;
exit:
psa_generator_abort( &generator );
psa_destroy_key( base_key );
psa_destroy_key( derived_key );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_export( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int bytes1_arg,
int bytes2_arg )
{
psa_key_slot_t base_key = 1;
psa_key_slot_t derived_key = 2;
psa_algorithm_t alg = alg_arg;
size_t bytes1 = bytes1_arg;
size_t bytes2 = bytes2_arg;
size_t capacity = bytes1 + bytes2;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
uint8_t *output_buffer = NULL;
uint8_t *export_buffer = NULL;
psa_key_policy_t policy;
size_t length;
ASSERT_ALLOC( output_buffer, capacity );
ASSERT_ALLOC( export_buffer, capacity );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
TEST_ASSERT( psa_set_key_policy( base_key, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( base_key, PSA_KEY_TYPE_DERIVE,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* Derive some material and output it. */
TEST_ASSERT( psa_key_derivation( &generator, base_key, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_read( &generator,
output_buffer,
capacity ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS );
/* Derive the same output again, but this time store it in key objects. */
TEST_ASSERT( psa_key_derivation( &generator, base_key, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) == PSA_SUCCESS );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, 0 );
TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_import_key( derived_key,
PSA_KEY_TYPE_RAW_DATA,
PSA_BYTES_TO_BITS( bytes1 ),
&generator ) == PSA_SUCCESS );
TEST_ASSERT( psa_export_key( derived_key,
export_buffer, bytes1,
&length ) == PSA_SUCCESS );
TEST_ASSERT( length == bytes1 );
TEST_ASSERT( psa_destroy_key( derived_key ) == PSA_SUCCESS );
TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_generator_import_key( derived_key,
PSA_KEY_TYPE_RAW_DATA,
PSA_BYTES_TO_BITS( bytes2 ),
&generator ) == PSA_SUCCESS );
TEST_ASSERT( psa_export_key( derived_key,
export_buffer + bytes1, bytes2,
&length ) == PSA_SUCCESS );
TEST_ASSERT( length == bytes2 );
/* Compare the outputs from the two runs. */
TEST_ASSERT( memcmp( output_buffer, export_buffer, capacity ) == 0 );
exit:
mbedtls_free( output_buffer );
mbedtls_free( export_buffer );
psa_generator_abort( &generator );
psa_destroy_key( base_key );
psa_destroy_key( derived_key );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
2018-06-19 22:00:52 +02:00
/* BEGIN_CASE */
void generate_random( int bytes_arg )
2018-06-19 22:00:52 +02:00
{
size_t bytes = bytes_arg;
const unsigned char trail[] = "don't overwrite me";
unsigned char *output = NULL;
unsigned char *changed = NULL;
size_t i;
unsigned run;
2018-06-19 22:00:52 +02:00
ASSERT_ALLOC( output, bytes + sizeof( trail ) );
ASSERT_ALLOC( changed, bytes );
memcpy( output + bytes, trail, sizeof( trail ) );
2018-06-19 22:00:52 +02:00
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
/* Run several times, to ensure that every output byte will be
* nonzero at least once with overwhelming probability
* (2^(-8*number_of_runs)). */
for( run = 0; run < 10; run++ )
{
if( bytes != 0 )
memset( output, 0, bytes );
TEST_ASSERT( psa_generate_random( output, bytes ) == PSA_SUCCESS );
2018-06-19 22:00:52 +02:00
/* Check that no more than bytes have been overwritten */
TEST_ASSERT( memcmp( output + bytes, trail, sizeof( trail ) ) == 0 );
2018-06-19 22:00:52 +02:00
for( i = 0; i < bytes; i++ )
{
if( output[i] != 0 )
++changed[i];
}
}
2018-06-19 22:00:52 +02:00
/* Check that every byte was changed to nonzero at least once. This
* validates that psa_generate_random is overwriting every byte of
* the output buffer. */
for( i = 0; i < bytes; i++ )
2018-06-19 22:00:52 +02:00
{
TEST_ASSERT( changed[i] != 0 );
2018-06-19 22:00:52 +02:00
}
exit:
mbedtls_psa_crypto_free( );
mbedtls_free( output );
mbedtls_free( changed );
2018-06-19 22:00:52 +02:00
}
/* END_CASE */
/* BEGIN_CASE */
void generate_key( int type_arg,
int bits_arg,
int usage_arg,
int alg_arg,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_type_t got_type;
size_t got_bits;
psa_status_t expected_info_status =
expected_status == PSA_SUCCESS ? PSA_SUCCESS : PSA_ERROR_EMPTY_SLOT;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Generate a key */
TEST_ASSERT( psa_generate_key( slot, type, bits,
NULL, 0 ) == expected_status );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == expected_info_status );
if( expected_info_status != PSA_SUCCESS )
goto exit;
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == bits );
/* Do something with the key according to its type and permitted usage. */
if( ! exercise_key( slot, usage, alg ) )
goto exit;
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void validate_module_init_generate_random( )
{
psa_status_t status;
uint8_t random[10] = { 0 };
status = psa_generate_random( random, sizeof( random ) );
TEST_ASSERT( status == PSA_ERROR_BAD_STATE );
}
/* END_CASE */
/* BEGIN_CASE */
void validate_module_init_key_based( )
{
psa_status_t status;
uint8_t data[10] = { 0 };
status = psa_import_key( 1, PSA_KEY_TYPE_RAW_DATA, data, sizeof( data ) );
TEST_ASSERT( status == PSA_ERROR_BAD_STATE );
}
/* END_CASE */