mbedtls/library/pk_wrap.c

967 lines
27 KiB
C
Raw Normal View History

/*
* Public Key abstraction layer: wrapper functions
*
2015-07-27 11:11:48 +02:00
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
2015-09-04 14:21:07 +02:00
* SPDX-License-Identifier: Apache-2.0
*
2015-09-04 14:21:07 +02:00
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
2015-09-04 14:21:07 +02:00
* http://www.apache.org/licenses/LICENSE-2.0
*
2015-09-04 14:21:07 +02:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
2015-09-04 14:21:07 +02:00
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#if !defined(MBEDTLS_CONFIG_FILE)
2015-03-09 18:05:11 +01:00
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_PK_C)
#include "mbedtls/pk_internal.h"
/* Even if RSA not activated, for the sake of RSA-alt */
2015-03-09 18:05:11 +01:00
#include "mbedtls/rsa.h"
#include <string.h>
#if defined(MBEDTLS_USE_TINYCRYPT)
#include "tinycrypt/ecc.h"
#include "tinycrypt/ecc_dsa.h"
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#endif /* MBEDTLS_USE_TINYCRYPT */
#if defined(MBEDTLS_ECP_C)
2015-03-09 18:05:11 +01:00
#include "mbedtls/ecp.h"
#endif
#if defined(MBEDTLS_ECDSA_C)
2015-03-09 18:05:11 +01:00
#include "mbedtls/ecdsa.h"
#endif
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) || \
defined(MBEDTLS_USE_TINYCRYPT)
#include "mbedtls/platform_util.h"
#endif
#if defined(MBEDTLS_PLATFORM_C)
2015-03-09 18:05:11 +01:00
#include "mbedtls/platform.h"
#else
#include <stdlib.h>
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#include <limits.h>
#include <stdint.h>
#if defined(MBEDTLS_RSA_C)
static int rsa_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_RSA ||
type == MBEDTLS_PK_RSASSA_PSS );
}
static size_t rsa_get_bitlen( const void *ctx )
2013-08-12 19:45:32 +02:00
{
const mbedtls_rsa_context * rsa = (const mbedtls_rsa_context *) ctx;
return( 8 * mbedtls_rsa_get_len( rsa ) );
2013-08-12 19:45:32 +02:00
}
static int rsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
size_t rsa_len = mbedtls_rsa_get_len( rsa );
#if SIZE_MAX > UINT_MAX
if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
if( sig_len < rsa_len )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
if( ( ret = mbedtls_rsa_pkcs1_verify( rsa, NULL, NULL,
MBEDTLS_RSA_PUBLIC, md_alg,
(unsigned int) hash_len, hash, sig ) ) != 0 )
return( ret );
/* The buffer contains a valid signature followed by extra data.
* We have a special error code for that so that so that callers can
* use mbedtls_pk_verify() to check "Does the buffer start with a
* valid signature?" and not just "Does the buffer contain a valid
* signature?". */
if( sig_len > rsa_len )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( 0 );
}
static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
2013-08-21 10:34:38 +02:00
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
#if SIZE_MAX > UINT_MAX
if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
*sig_len = mbedtls_rsa_get_len( rsa );
2013-08-21 10:34:38 +02:00
return( mbedtls_rsa_pkcs1_sign( rsa, f_rng, p_rng, MBEDTLS_RSA_PRIVATE,
md_alg, (unsigned int) hash_len, hash, sig ) );
2013-08-21 10:34:38 +02:00
}
2013-08-21 11:51:08 +02:00
static int rsa_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
if( ilen != mbedtls_rsa_get_len( rsa ) )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2013-08-21 11:51:08 +02:00
return( mbedtls_rsa_pkcs1_decrypt( rsa, f_rng, p_rng,
MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) );
2013-08-21 11:51:08 +02:00
}
static int rsa_encrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
*olen = mbedtls_rsa_get_len( rsa );
2013-08-21 11:51:08 +02:00
2014-11-08 17:08:08 +01:00
if( *olen > osize )
return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE );
2014-11-08 17:08:08 +01:00
return( mbedtls_rsa_pkcs1_encrypt( rsa, f_rng, p_rng, MBEDTLS_RSA_PUBLIC,
ilen, input, output ) );
2013-08-21 11:51:08 +02:00
}
2014-11-06 16:51:20 +01:00
static int rsa_check_pair_wrap( const void *pub, const void *prv )
{
return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub,
(const mbedtls_rsa_context *) prv ) );
2014-11-06 16:51:20 +01:00
}
static void *rsa_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_context ) );
if( ctx != NULL )
mbedtls_rsa_init( (mbedtls_rsa_context *) ctx, 0, 0 );
2014-06-17 14:06:49 +02:00
return( ctx );
}
static void rsa_free_wrap( void *ctx )
{
mbedtls_rsa_free( (mbedtls_rsa_context *) ctx );
mbedtls_free( ctx );
}
static void rsa_debug( const void *ctx, mbedtls_pk_debug_item *items )
{
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.N";
items->value = &( ((mbedtls_rsa_context *) ctx)->N );
items++;
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.E";
items->value = &( ((mbedtls_rsa_context *) ctx)->E );
}
const mbedtls_pk_info_t mbedtls_rsa_info = {
MBEDTLS_PK_RSA,
2013-08-12 19:45:32 +02:00
"RSA",
rsa_get_bitlen,
rsa_can_do,
rsa_verify_wrap,
2013-08-21 10:34:38 +02:00
rsa_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
2013-08-21 11:51:08 +02:00
rsa_decrypt_wrap,
rsa_encrypt_wrap,
2014-11-06 16:51:20 +01:00
rsa_check_pair_wrap,
rsa_alloc_wrap,
rsa_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
rsa_debug,
};
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
2013-08-12 18:51:26 +02:00
/*
* Generic EC key
*/
static int eckey_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH ||
type == MBEDTLS_PK_ECDSA );
}
static size_t eckey_get_bitlen( const void *ctx )
2013-08-12 19:45:32 +02:00
{
return( ((mbedtls_ecp_keypair *) ctx)->grp.pbits );
2013-08-12 19:45:32 +02:00
}
#if defined(MBEDTLS_ECDSA_C)
2013-08-21 10:34:38 +02:00
/* Forward declarations */
static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len );
static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
2013-08-21 10:34:38 +02:00
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
static int eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
mbedtls_ecdsa_context ecdsa;
mbedtls_ecdsa_init( &ecdsa );
if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 )
2013-08-20 16:58:13 +02:00
ret = ecdsa_verify_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len );
mbedtls_ecdsa_free( &ecdsa );
return( ret );
}
2013-08-21 10:34:38 +02:00
static int eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
2013-08-21 10:34:38 +02:00
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
mbedtls_ecdsa_context ecdsa;
2013-08-21 10:34:38 +02:00
mbedtls_ecdsa_init( &ecdsa );
2013-08-21 10:34:38 +02:00
if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 )
2013-08-21 10:34:38 +02:00
ret = ecdsa_sign_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len,
f_rng, p_rng );
mbedtls_ecdsa_free( &ecdsa );
2013-08-21 10:34:38 +02:00
return( ret );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
/* Forward declarations */
static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx );
static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx );
/*
* Restart context for ECDSA operations with ECKEY context
*
* We need to store an actual ECDSA context, as we need to pass the same to
* the underlying ecdsa function, so we can't create it on the fly every time.
*/
typedef struct
{
mbedtls_ecdsa_restart_ctx ecdsa_rs;
mbedtls_ecdsa_context ecdsa_ctx;
} eckey_restart_ctx;
static void *eckey_rs_alloc( void )
{
eckey_restart_ctx *rs_ctx;
void *ctx = mbedtls_calloc( 1, sizeof( eckey_restart_ctx ) );
if( ctx != NULL )
{
rs_ctx = ctx;
mbedtls_ecdsa_restart_init( &rs_ctx->ecdsa_rs );
mbedtls_ecdsa_init( &rs_ctx->ecdsa_ctx );
}
return( ctx );
}
static void eckey_rs_free( void *ctx )
{
eckey_restart_ctx *rs_ctx;
if( ctx == NULL)
return;
rs_ctx = ctx;
mbedtls_ecdsa_restart_free( &rs_ctx->ecdsa_rs );
mbedtls_ecdsa_free( &rs_ctx->ecdsa_ctx );
mbedtls_free( ctx );
}
static int eckey_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx )
{
int ret;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if( rs == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* set up our own sub-context if needed (that is, on first run) */
if( rs->ecdsa_ctx.grp.pbits == 0 )
MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) );
MBEDTLS_MPI_CHK( ecdsa_verify_rs_wrap( &rs->ecdsa_ctx,
md_alg, hash, hash_len,
sig, sig_len, &rs->ecdsa_rs ) );
cleanup:
return( ret );
}
static int eckey_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx )
{
int ret;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if( rs == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* set up our own sub-context if needed (that is, on first run) */
if( rs->ecdsa_ctx.grp.pbits == 0 )
MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) );
MBEDTLS_MPI_CHK( ecdsa_sign_rs_wrap( &rs->ecdsa_ctx, md_alg,
hash, hash_len, sig, sig_len,
f_rng, p_rng, &rs->ecdsa_rs ) );
cleanup:
return( ret );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
#endif /* MBEDTLS_ECDSA_C */
2014-11-06 16:51:20 +01:00
static int eckey_check_pair( const void *pub, const void *prv )
{
return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub,
(const mbedtls_ecp_keypair *) prv ) );
2014-11-06 16:51:20 +01:00
}
static void *eckey_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecp_keypair ) );
if( ctx != NULL )
mbedtls_ecp_keypair_init( ctx );
return( ctx );
}
static void eckey_free_wrap( void *ctx )
{
mbedtls_ecp_keypair_free( (mbedtls_ecp_keypair *) ctx );
mbedtls_free( ctx );
}
static void eckey_debug( const void *ctx, mbedtls_pk_debug_item *items )
{
items->type = MBEDTLS_PK_DEBUG_ECP;
items->name = "eckey.Q";
items->value = &( ((mbedtls_ecp_keypair *) ctx)->Q );
}
const mbedtls_pk_info_t mbedtls_eckey_info = {
MBEDTLS_PK_ECKEY,
2013-08-12 19:45:32 +02:00
"EC",
eckey_get_bitlen,
eckey_can_do,
#if defined(MBEDTLS_ECDSA_C)
eckey_verify_wrap,
2013-08-21 10:34:38 +02:00
eckey_sign_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
eckey_verify_rs_wrap,
eckey_sign_rs_wrap,
#endif
#else /* MBEDTLS_ECDSA_C */
NULL,
NULL,
#endif /* MBEDTLS_ECDSA_C */
2013-08-21 11:51:08 +02:00
NULL,
NULL,
2014-11-06 16:51:20 +01:00
eckey_check_pair,
eckey_alloc_wrap,
eckey_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
eckey_rs_alloc,
eckey_rs_free,
#endif
eckey_debug,
};
2013-08-12 18:51:26 +02:00
/*
2014-04-08 17:35:40 +02:00
* EC key restricted to ECDH
2013-08-12 18:51:26 +02:00
*/
static int eckeydh_can_do( mbedtls_pk_type_t type )
2013-08-12 18:51:26 +02:00
{
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH );
2013-08-12 18:51:26 +02:00
}
const mbedtls_pk_info_t mbedtls_eckeydh_info = {
MBEDTLS_PK_ECKEY_DH,
2013-08-12 19:45:32 +02:00
"EC_DH",
eckey_get_bitlen, /* Same underlying key structure */
2013-08-12 18:51:26 +02:00
eckeydh_can_do,
NULL,
2013-08-21 10:34:38 +02:00
NULL,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
2013-08-21 11:51:08 +02:00
NULL,
NULL,
2014-11-06 16:51:20 +01:00
eckey_check_pair,
eckey_alloc_wrap, /* Same underlying key structure */
eckey_free_wrap, /* Same underlying key structure */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
eckey_debug, /* Same underlying key structure */
2013-08-12 18:51:26 +02:00
};
#endif /* MBEDTLS_ECP_C */
#if defined(MBEDTLS_USE_TINYCRYPT)
static int extract_ecdsa_sig_int( unsigned char **from, const unsigned char *end,
unsigned char *to, size_t to_len )
{
int ret;
size_t unpadded_len, padding_len;
if( ( ret = mbedtls_asn1_get_tag( from, end, &unpadded_len,
MBEDTLS_ASN1_INTEGER ) ) != 0 )
{
return( ret );
}
while( unpadded_len > 0 && **from == 0x00 )
{
( *from )++;
unpadded_len--;
}
if( unpadded_len > to_len || unpadded_len == 0 )
return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
padding_len = to_len - unpadded_len;
memset( to, 0x00, padding_len );
memcpy( to + padding_len, *from, unpadded_len );
( *from ) += unpadded_len;
return( 0 );
}
/*
* Convert a signature from an ASN.1 sequence of two integers
* to a raw {r,s} buffer. Note: the provided sig buffer must be at least
* twice as big as int_size.
*/
static int extract_ecdsa_sig( unsigned char **p, const unsigned char *end,
unsigned char *sig, size_t int_size )
{
int ret;
size_t tmp_size;
if( ( ret = mbedtls_asn1_get_tag( p, end, &tmp_size,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
return( ret );
/* Extract r */
if( ( ret = extract_ecdsa_sig_int( p, end, sig, int_size ) ) != 0 )
return( ret );
/* Extract s */
if( ( ret = extract_ecdsa_sig_int( p, end, sig + int_size, int_size ) ) != 0 )
return( ret );
return( 0 );
}
static size_t uecc_eckey_get_bitlen( const void *ctx )
{
(void) ctx;
return( (size_t) ( NUM_ECC_BYTES * 8 ) );
}
static int uecc_eckey_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECDSA ||
type == MBEDTLS_PK_ECKEY );
}
static int uecc_eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
uint8_t signature[2*NUM_ECC_BYTES];
unsigned char *p;
const struct uECC_Curve_t * uecc_curve = uECC_secp256r1();
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
((void) md_alg);
p = (unsigned char*) sig;
ret = extract_ecdsa_sig( &p, sig + sig_len, signature, NUM_ECC_BYTES );
if( ret != 0 )
return( ret );
ret = uECC_verify( keypair->public_key, hash,
(unsigned) hash_len, signature, uecc_curve );
if( ret == 0 )
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );
return( 0 );
}
/*
* Simultaneously convert and move raw MPI from the beginning of a buffer
* to an ASN.1 MPI at the end of the buffer.
* See also mbedtls_asn1_write_mpi().
*
* p: pointer to the end of the output buffer
* start: start of the output buffer, and also of the mpi to write at the end
* n_len: length of the mpi to read from start
*/
static int asn1_write_mpibuf( unsigned char **p, unsigned char *start,
size_t n_len )
{
int ret;
size_t len = 0;
if( (size_t)( *p - start ) < n_len )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
len = n_len;
*p -= len;
memmove( *p, start, len );
/* ASN.1 DER encoding requires minimal length, so skip leading 0s.
* Neither r nor s should be 0, but as a failsafe measure, still detect
* that rather than overflowing the buffer in case of an error. */
while( len > 0 && **p == 0x00 )
{
++(*p);
--len;
}
/* this is only reached if the signature was invalid */
if( len == 0 )
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );
/* if the msb is 1, ASN.1 requires that we prepend a 0.
* Neither r nor s can be 0, so we can assume len > 0 at all times. */
if( **p & 0x80 )
{
if( *p - start < 1 )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
*--(*p) = 0x00;
len += 1;
}
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start,
MBEDTLS_ASN1_INTEGER ) );
return( (int) len );
}
2019-04-23 08:15:54 +02:00
/* Transcode signature from uECC format to ASN.1 sequence.
* See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of
* MPIs, and in-place.
*
* [in/out] sig: the signature pre- and post-transcoding
* [in/out] sig_len: signature length pre- and post-transcoding
* [int] buf_len: the available size the in/out buffer
*/
static int pk_ecdsa_sig_asn1_from_uecc( unsigned char *sig, size_t *sig_len,
size_t buf_len )
{
int ret;
size_t len = 0;
const size_t rs_len = *sig_len / 2;
unsigned char *p = sig + buf_len;
MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig + rs_len, rs_len ) );
MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig, rs_len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, sig, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, sig,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
memmove( sig, p, len );
*sig_len = len;
return( 0 );
}
static int uecc_eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
2019-04-23 08:15:54 +02:00
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
const struct uECC_Curve_t * uecc_curve = uECC_secp256r1();
/*
* RFC-4492 page 20:
*
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
*
* Size is at most
* 1 (tag) + 1 (len) + 1 (initial 0) + NUM_ECC_BYTES for each of r and s,
* twice that + 1 (tag) + 2 (len) for the sequence
* (assuming NUM_ECC_BYTES is less than 126 for r and s,
* and less than 124 (total len <= 255) for the sequence)
*/
const size_t max_secp256r1_ecdsa_sig_len = 3 + 2 * ( 3 + NUM_ECC_BYTES );
uECC_sign( keypair->private_key, hash, hash_len, sig, uecc_curve );
*sig_len = 2 * NUM_ECC_BYTES;
2019-04-23 08:15:54 +02:00
/* uECC owns its rng function pointer */
(void) f_rng;
(void) p_rng;
2019-04-23 08:15:54 +02:00
(void) md_alg;
return( pk_ecdsa_sig_asn1_from_uecc( sig, sig_len, max_secp256r1_ecdsa_sig_len ) );
}
static void *uecc_eckey_alloc_wrap( void )
{
return( mbedtls_calloc( 1, sizeof( mbedtls_uecc_keypair ) ) );
}
static void uecc_eckey_free_wrap( void *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_uecc_keypair ) );
mbedtls_free( ctx );
}
const mbedtls_pk_info_t mbedtls_uecc_eckey_info = {
MBEDTLS_PK_ECKEY,
"EC",
uecc_eckey_get_bitlen,
uecc_eckey_can_do,
uecc_eckey_verify_wrap,
uecc_eckey_sign_wrap,
NULL,
NULL,
NULL,
uecc_eckey_alloc_wrap,
uecc_eckey_free_wrap,
NULL,
};
#endif /* MBEDTLS_USE_TINYCRYPT */
#if defined(MBEDTLS_ECDSA_C)
static int ecdsa_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECDSA );
}
static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature( (mbedtls_ecdsa_context *) ctx,
hash, hash_len, sig, sig_len );
if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( ret );
}
static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
2013-08-21 10:34:38 +02:00
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
return( mbedtls_ecdsa_write_signature( (mbedtls_ecdsa_context *) ctx,
md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) );
2013-08-21 10:34:38 +02:00
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx )
{
int ret;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature_restartable(
(mbedtls_ecdsa_context *) ctx,
hash, hash_len, sig, sig_len,
(mbedtls_ecdsa_restart_ctx *) rs_ctx );
if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( ret );
}
static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx )
{
return( mbedtls_ecdsa_write_signature_restartable(
(mbedtls_ecdsa_context *) ctx,
md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng,
(mbedtls_ecdsa_restart_ctx *) rs_ctx ) );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
static void *ecdsa_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_context ) );
if( ctx != NULL )
mbedtls_ecdsa_init( (mbedtls_ecdsa_context *) ctx );
return( ctx );
}
static void ecdsa_free_wrap( void *ctx )
{
mbedtls_ecdsa_free( (mbedtls_ecdsa_context *) ctx );
mbedtls_free( ctx );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
static void *ecdsa_rs_alloc( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_restart_ctx ) );
if( ctx != NULL )
mbedtls_ecdsa_restart_init( ctx );
return( ctx );
}
static void ecdsa_rs_free( void *ctx )
{
mbedtls_ecdsa_restart_free( ctx );
mbedtls_free( ctx );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
const mbedtls_pk_info_t mbedtls_ecdsa_info = {
MBEDTLS_PK_ECDSA,
"ECDSA",
eckey_get_bitlen, /* Compatible key structures */
ecdsa_can_do,
ecdsa_verify_wrap,
2013-08-21 10:34:38 +02:00
ecdsa_sign_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
ecdsa_verify_rs_wrap,
ecdsa_sign_rs_wrap,
#endif
2013-08-21 11:51:08 +02:00
NULL,
NULL,
2014-11-06 16:51:20 +01:00
eckey_check_pair, /* Compatible key structures */
ecdsa_alloc_wrap,
ecdsa_free_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
ecdsa_rs_alloc,
ecdsa_rs_free,
#endif
eckey_debug, /* Compatible key structures */
};
#endif /* MBEDTLS_ECDSA_C */
2013-08-21 12:28:31 +02:00
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
2013-08-21 12:28:31 +02:00
/*
* Support for alternative RSA-private implementations
*/
static int rsa_alt_can_do( mbedtls_pk_type_t type )
2014-06-05 13:41:44 +02:00
{
return( type == MBEDTLS_PK_RSA );
2014-06-05 13:41:44 +02:00
}
static size_t rsa_alt_get_bitlen( const void *ctx )
2013-08-21 12:28:31 +02:00
{
const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx;
2013-08-21 12:28:31 +02:00
return( 8 * rsa_alt->key_len_func( rsa_alt->key ) );
2013-08-21 12:28:31 +02:00
}
static int rsa_alt_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
2013-08-21 12:28:31 +02:00
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx;
2013-08-21 12:28:31 +02:00
#if SIZE_MAX > UINT_MAX
if( UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
2013-08-21 12:28:31 +02:00
*sig_len = rsa_alt->key_len_func( rsa_alt->key );
return( rsa_alt->sign_func( rsa_alt->key, f_rng, p_rng, MBEDTLS_RSA_PRIVATE,
md_alg, (unsigned int) hash_len, hash, sig ) );
2013-08-21 12:28:31 +02:00
}
static int rsa_alt_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx;
2013-08-21 12:28:31 +02:00
((void) f_rng);
((void) p_rng);
if( ilen != rsa_alt->key_len_func( rsa_alt->key ) )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2013-08-21 12:28:31 +02:00
return( rsa_alt->decrypt_func( rsa_alt->key,
MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) );
2013-08-21 12:28:31 +02:00
}
#if defined(MBEDTLS_RSA_C)
2014-11-08 17:08:08 +01:00
static int rsa_alt_check_pair( const void *pub, const void *prv )
{
unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
2014-11-08 17:08:08 +01:00
unsigned char hash[32];
size_t sig_len = 0;
int ret;
if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) )
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
2014-11-08 17:08:08 +01:00
memset( hash, 0x2a, sizeof( hash ) );
if( ( ret = rsa_alt_sign_wrap( (void *) prv, MBEDTLS_MD_NONE,
2014-11-08 17:08:08 +01:00
hash, sizeof( hash ),
sig, &sig_len, NULL, NULL ) ) != 0 )
{
return( ret );
}
if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE,
2014-11-08 17:08:08 +01:00
hash, sizeof( hash ), sig, sig_len ) != 0 )
{
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
2014-11-08 17:08:08 +01:00
}
return( 0 );
}
#endif /* MBEDTLS_RSA_C */
2014-11-08 17:08:08 +01:00
2013-08-21 12:28:31 +02:00
static void *rsa_alt_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_alt_context ) );
2013-08-21 12:28:31 +02:00
if( ctx != NULL )
memset( ctx, 0, sizeof( mbedtls_rsa_alt_context ) );
2013-08-21 12:28:31 +02:00
2014-06-17 14:06:49 +02:00
return( ctx );
2013-08-21 12:28:31 +02:00
}
static void rsa_alt_free_wrap( void *ctx )
{
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_rsa_alt_context ) );
mbedtls_free( ctx );
2013-08-21 12:28:31 +02:00
}
const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
MBEDTLS_PK_RSA_ALT,
2013-08-21 12:28:31 +02:00
"RSA-alt",
rsa_alt_get_bitlen,
2014-06-05 13:41:44 +02:00
rsa_alt_can_do,
2013-08-21 12:28:31 +02:00
NULL,
rsa_alt_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
2013-08-21 12:28:31 +02:00
rsa_alt_decrypt_wrap,
NULL,
#if defined(MBEDTLS_RSA_C)
2014-11-08 17:08:08 +01:00
rsa_alt_check_pair,
2014-11-12 00:01:34 +01:00
#else
NULL,
#endif
2013-08-21 12:28:31 +02:00
rsa_alt_alloc_wrap,
rsa_alt_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
2013-08-21 12:28:31 +02:00
NULL,
};
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
2015-03-31 14:01:33 +02:00
#endif /* MBEDTLS_PK_C */