mbedtls/tests/suites/helpers.function

301 lines
7.2 KiB
Plaintext
Raw Normal View History

#if defined(MBEDTLS_PLATFORM_C)
2015-03-09 18:05:11 +01:00
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define mbedtls_printf printf
#define mbedtls_fprintf fprintf
#define mbedtls_calloc calloc
#define mbedtls_free free
#define mbedtls_exit exit
#define mbedtls_fprintf fprintf
#define mbedtls_printf printf
#define mbedtls_snprintf snprintf
#endif
#ifdef _MSC_VER
#include <basetsd.h>
typedef UINT32 uint32_t;
#else
#include <stdint.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define assert(a) if( !( a ) ) \
{ \
mbedtls_fprintf( stderr, "Assertion Failed at %s:%d - %s\n", \
__FILE__, __LINE__, #a ); \
mbedtls_exit( 1 ); \
}
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
static int unhexify( unsigned char *obuf, const char *ibuf )
{
unsigned char c, c2;
int len = strlen( ibuf ) / 2;
assert( strlen( ibuf ) % 2 == 0 ); // must be even number of bytes
while( *ibuf != 0 )
{
c = *ibuf++;
if( c >= '0' && c <= '9' )
c -= '0';
else if( c >= 'a' && c <= 'f' )
c -= 'a' - 10;
else if( c >= 'A' && c <= 'F' )
c -= 'A' - 10;
else
assert( 0 );
c2 = *ibuf++;
if( c2 >= '0' && c2 <= '9' )
c2 -= '0';
else if( c2 >= 'a' && c2 <= 'f' )
c2 -= 'a' - 10;
else if( c2 >= 'A' && c2 <= 'F' )
c2 -= 'A' - 10;
else
assert( 0 );
*obuf++ = ( c << 4 ) | c2;
}
return len;
}
static void hexify( unsigned char *obuf, const unsigned char *ibuf, int len )
{
unsigned char l, h;
while( len != 0 )
{
h = *ibuf / 16;
l = *ibuf % 16;
if( h < 10 )
*obuf++ = '0' + h;
else
*obuf++ = 'a' + h - 10;
if( l < 10 )
*obuf++ = '0' + l;
else
*obuf++ = 'a' + l - 10;
++ibuf;
len--;
}
}
/**
* Allocate and zeroize a buffer.
*
* If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
*
* For convenience, dies if allocation fails.
*/
static unsigned char *zero_alloc( size_t len )
{
void *p;
size_t actual_len = ( len != 0 ) ? len : 1;
p = mbedtls_calloc( 1, actual_len );
assert( p != NULL );
memset( p, 0x00, actual_len );
return( p );
}
/**
* Allocate and fill a buffer from hex data.
*
* The buffer is sized exactly as needed. This allows to detect buffer
* overruns (including overreads) when running the test suite under valgrind.
*
* If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
*
* For convenience, dies if allocation fails.
*/
static unsigned char *unhexify_alloc( const char *ibuf, size_t *olen )
{
unsigned char *obuf;
*olen = strlen( ibuf ) / 2;
if( *olen == 0 )
return( zero_alloc( *olen ) );
obuf = mbedtls_calloc( 1, *olen );
assert( obuf != NULL );
(void) unhexify( obuf, ibuf );
return( obuf );
}
/**
* This function just returns data from rand().
* Although predictable and often similar on multiple
* runs, this does not result in identical random on
* each run. So do not use this if the results of a
* test depend on the random data that is generated.
*
* rng_state shall be NULL.
*/
static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len )
{
#if !defined(__OpenBSD__)
size_t i;
if( rng_state != NULL )
rng_state = NULL;
for( i = 0; i < len; ++i )
output[i] = rand();
#else
if( rng_state != NULL )
rng_state = NULL;
arc4random_buf( output, len );
#endif /* !OpenBSD */
return( 0 );
}
/**
* This function only returns zeros
*
* rng_state shall be NULL.
*/
static int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len )
{
if( rng_state != NULL )
rng_state = NULL;
memset( output, 0, len );
return( 0 );
}
typedef struct
{
unsigned char *buf;
size_t length;
} rnd_buf_info;
/**
* This function returns random based on a buffer it receives.
*
* rng_state shall be a pointer to a rnd_buf_info structure.
2015-10-30 09:23:19 +01:00
*
* The number of bytes released from the buffer on each call to
* the random function is specified by per_call. (Can be between
* 1 and 4)
*
* After the buffer is empty it will return rand();
*/
static int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len )
{
rnd_buf_info *info = (rnd_buf_info *) rng_state;
size_t use_len;
if( rng_state == NULL )
return( rnd_std_rand( NULL, output, len ) );
use_len = len;
if( len > info->length )
use_len = info->length;
if( use_len )
{
memcpy( output, info->buf, use_len );
info->buf += use_len;
info->length -= use_len;
}
if( len - use_len > 0 )
return( rnd_std_rand( NULL, output + use_len, len - use_len ) );
return( 0 );
}
/**
* Info structure for the pseudo random function
*
* Key should be set at the start to a test-unique value.
* Do not forget endianness!
* State( v0, v1 ) should be set to zero.
*/
typedef struct
{
uint32_t key[16];
uint32_t v0, v1;
} rnd_pseudo_info;
/**
* This function returns random based on a pseudo random function.
* This means the results should be identical on all systems.
* Pseudo random is based on the XTEA encryption algorithm to
* generate pseudorandom.
*
* rng_state shall be a pointer to a rnd_pseudo_info structure.
*/
static int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len )
{
rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state;
uint32_t i, *k, sum, delta=0x9E3779B9;
unsigned char result[4], *out = output;
if( rng_state == NULL )
return( rnd_std_rand( NULL, output, len ) );
k = info->key;
while( len > 0 )
{
size_t use_len = ( len > 4 ) ? 4 : len;
sum = 0;
for( i = 0; i < 32; i++ )
{
info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) )
+ info->v1 ) ^ ( sum + k[sum & 3] );
sum += delta;
info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) )
+ info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] );
}
PUT_UINT32_BE( info->v0, result, 0 );
memcpy( out, result, use_len );
len -= use_len;
out += 4;
}
return( 0 );
}