mbedtls/library/rsa.c

1868 lines
50 KiB
C
Raw Normal View History

/*
* The RSA public-key cryptosystem
*
2015-01-23 10:45:19 +01:00
* Copyright (C) 2006-2014, ARM Limited, All Rights Reserved
2010-07-18 22:36:00 +02:00
*
2015-03-06 14:17:10 +01:00
* This file is part of mbed TLS (https://tls.mbed.org)
2010-07-18 22:36:00 +02:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* RSA was designed by Ron Rivest, Adi Shamir and Len Adleman.
*
* http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
* http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf
* [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
* Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
* Stefan Mangard
* https://arxiv.org/abs/1702.08719v2
*
*/
#if !defined(POLARSSL_CONFIG_FILE)
#include "polarssl/config.h"
#else
#include POLARSSL_CONFIG_FILE
#endif
#if defined(POLARSSL_RSA_C)
#include "polarssl/rsa.h"
#include "polarssl/oid.h"
#include <string.h>
#if defined(POLARSSL_PKCS1_V21)
#include "polarssl/md.h"
#endif
#if defined(POLARSSL_PKCS1_V15) && !defined(__OpenBSD__)
#include <stdlib.h>
#endif
#if defined(POLARSSL_PLATFORM_C)
#include "polarssl/platform.h"
#else
#include <stdio.h>
#define polarssl_printf printf
#define polarssl_malloc malloc
#define polarssl_free free
#endif
/* Implementation that should never be optimized out by the compiler */
static void polarssl_zeroize( void *v, size_t n ) {
volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
}
/*
* Initialize an RSA context
*/
void rsa_init( rsa_context *ctx,
int padding,
int hash_id )
{
memset( ctx, 0, sizeof( rsa_context ) );
2014-03-10 21:55:35 +01:00
rsa_set_padding( ctx, padding, hash_id );
2013-09-29 14:58:17 +02:00
#if defined(POLARSSL_THREADING_C)
polarssl_mutex_init( &ctx->mutex );
#endif
}
2014-03-10 21:55:35 +01:00
/*
* Set padding for an existing RSA context
*/
void rsa_set_padding( rsa_context *ctx, int padding, int hash_id )
{
ctx->padding = padding;
ctx->hash_id = hash_id;
}
#if defined(POLARSSL_GENPRIME)
/*
* Generate an RSA keypair
*/
int rsa_gen_key( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
unsigned int nbits, int exponent )
{
int ret;
mpi P1, Q1, H, G;
if( f_rng == NULL || nbits < 128 || exponent < 3 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
if( nbits % 2 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
mpi_init( &P1 ); mpi_init( &Q1 );
mpi_init( &H ); mpi_init( &G );
/*
* find primes P and Q with Q < P so that:
* GCD( E, (P-1)*(Q-1) ) == 1
*/
MPI_CHK( mpi_lset( &ctx->E, exponent ) );
do
{
MPI_CHK( mpi_gen_prime( &ctx->P, nbits >> 1, 0,
f_rng, p_rng ) );
MPI_CHK( mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
f_rng, p_rng ) );
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
continue;
MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
if( mpi_msb( &ctx->N ) != nbits )
continue;
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
mpi_swap( &ctx->P, &ctx->Q );
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
}
while( mpi_cmp_int( &G, 1 ) != 0 );
/*
* D = E^-1 mod ((P-1)*(Q-1))
* DP = D mod (P - 1)
* DQ = D mod (Q - 1)
* QP = Q^-1 mod P
*/
MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) );
MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );
ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
cleanup:
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
if( ret != 0 )
{
rsa_free( ctx );
return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );
}
return( 0 );
}
#endif /* POLARSSL_GENPRIME */
/*
* Check a public RSA key
*/
int rsa_check_pubkey( const rsa_context *ctx )
{
if( !ctx->N.p || !ctx->E.p )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( ( ctx->N.p[0] & 1 ) == 0 ||
( ctx->E.p[0] & 1 ) == 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( mpi_msb( &ctx->N ) < 128 ||
mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( mpi_msb( &ctx->E ) < 2 ||
mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
return( 0 );
}
/*
* Check a private RSA key
*/
int rsa_check_privkey( const rsa_context *ctx )
{
int ret;
mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2, DP, DQ, QP;
if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
return( ret );
if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 );
mpi_init( &L1 ); mpi_init( &L2 ); mpi_init( &DP ); mpi_init( &DQ );
mpi_init( &QP );
MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );
MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) );
MPI_CHK( mpi_mod_mpi( &DP, &ctx->D, &P1 ) );
MPI_CHK( mpi_mod_mpi( &DQ, &ctx->D, &Q1 ) );
MPI_CHK( mpi_inv_mod( &QP, &ctx->Q, &ctx->P ) );
/*
* Check for a valid PKCS1v2 private key
*/
if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||
mpi_cmp_mpi( &DP, &ctx->DP ) != 0 ||
mpi_cmp_mpi( &DQ, &ctx->DQ ) != 0 ||
mpi_cmp_mpi( &QP, &ctx->QP ) != 0 ||
mpi_cmp_int( &L2, 0 ) != 0 ||
mpi_cmp_int( &I, 1 ) != 0 ||
mpi_cmp_int( &G, 1 ) != 0 )
{
ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;
}
cleanup:
mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 );
mpi_free( &L1 ); mpi_free( &L2 ); mpi_free( &DP ); mpi_free( &DQ );
mpi_free( &QP );
if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
return( ret );
if( ret != 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );
return( 0 );
}
2014-11-06 14:02:51 +01:00
/*
* Check if contexts holding a public and private key match
*/
int rsa_check_pub_priv( const rsa_context *pub, const rsa_context *prv )
{
if( rsa_check_pubkey( pub ) != 0 ||
rsa_check_privkey( prv ) != 0 )
{
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
}
if( mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
{
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
}
return( 0 );
}
/*
* Do an RSA public key operation
*/
int rsa_public( rsa_context *ctx,
const unsigned char *input,
unsigned char *output )
{
int ret;
size_t olen;
mpi T;
mpi_init( &T );
#if defined(POLARSSL_THREADING_C)
if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
return( ret );
#endif
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{
ret = POLARSSL_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
olen = ctx->len;
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
MPI_CHK( mpi_write_binary( &T, output, olen ) );
cleanup:
#if defined(POLARSSL_THREADING_C)
if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif
mpi_free( &T );
if( ret != 0 )
return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );
return( 0 );
}
/*
* Generate or update blinding values, see section 10 of:
* KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
* DSS, and other systems. In : Advances in CryptologyCRYPTO96. Springer
* Berlin Heidelberg, 1996. p. 104-113.
*/
static int rsa_prepare_blinding( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret, count = 0;
if( ctx->Vf.p != NULL )
{
/* We already have blinding values, just update them by squaring */
MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
2013-09-13 12:57:23 +02:00
MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
2013-09-13 12:57:23 +02:00
MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
goto cleanup;
}
/* Unblinding value: Vf = random number, invertible mod N */
do {
if( count++ > 10 )
return( POLARSSL_ERR_RSA_RNG_FAILED );
MPI_CHK( mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
MPI_CHK( mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
} while( mpi_cmp_int( &ctx->Vi, 1 ) != 0 );
/* Blinding value: Vi = Vf^(-e) mod N */
MPI_CHK( mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
MPI_CHK( mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
cleanup:
return( ret );
}
/*
* Exponent blinding supposed to prevent side-channel attacks using multiple
* traces of measurements to recover the RSA key. The more collisions are there,
* the more bits of the key can be recovered. See [3].
*
* Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
* observations on avarage.
*
* For example with 28 byte blinding to achieve 2 collisions the adversary has
* to make 2^112 observations on avarage.
*
* (With the currently (as of 2017 April) known best algorithms breaking 2048
* bit RSA requires approximately as much time as trying out 2^112 random keys.
* Thus in this sense with 28 byte blinding the security is not reduced by
* side-channel attacks like the one in [3])
*
* This countermeasure does not help if the key recovery is possible with a
* single trace.
*/
#define RSA_EXPONENT_BLINDING 28
/*
* Do an RSA private key operation
*/
int rsa_private( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
const unsigned char *input,
unsigned char *output )
{
int ret;
size_t olen;
mpi T, T1, T2;
mpi P1, Q1, R;
#if defined(POLARSSL_RSA_NO_CRT)
mpi D_blind;
mpi *D = &ctx->D;
#else
mpi DP_blind, DQ_blind;
mpi *DP = &ctx->DP;
mpi *DQ = &ctx->DQ;
#endif
mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &R );
if( f_rng != NULL )
{
#if defined(POLARSSL_RSA_NO_CRT)
mpi_init( &D_blind );
#else
mpi_init( &DP_blind );
mpi_init( &DQ_blind );
#endif
}
#if defined(POLARSSL_THREADING_C)
2017-05-11 15:10:32 +02:00
if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
return( ret );
#endif
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{
ret = POLARSSL_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
if( f_rng != NULL )
{
/*
* Blinding
* T = T * Vi mod N
*/
MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
MPI_CHK( mpi_mul_mpi( &T, &T, &ctx->Vi ) );
MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
/*
* Exponent blinding
*/
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
#if defined(POLARSSL_RSA_NO_CRT)
/*
* D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
*/
MPI_CHK( mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
f_rng, p_rng ) );
MPI_CHK( mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
MPI_CHK( mpi_mul_mpi( &D_blind, &D_blind, &R ) );
MPI_CHK( mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
D = &D_blind;
#else
/*
* DP_blind = ( P - 1 ) * R + DP
*/
MPI_CHK( mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
f_rng, p_rng ) );
MPI_CHK( mpi_mul_mpi( &DP_blind, &P1, &R ) );
MPI_CHK( mpi_add_mpi( &DP_blind, &DP_blind,
&ctx->DP ) );
DP = &DP_blind;
/*
* DQ_blind = ( Q - 1 ) * R + DQ
*/
MPI_CHK( mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
f_rng, p_rng ) );
MPI_CHK( mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
MPI_CHK( mpi_add_mpi( &DQ_blind, &DQ_blind,
&ctx->DQ ) );
DQ = &DQ_blind;
#endif /* POLARSSL_RSA_NO_CRT */
}
2013-08-30 11:00:25 +02:00
2014-11-06 18:15:12 +01:00
#if defined(POLARSSL_RSA_NO_CRT)
MPI_CHK( mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
2014-11-06 18:15:12 +01:00
#else
/*
* Faster decryption using the CRT
*
* T1 = input ^ dP mod P
* T2 = input ^ dQ mod Q
*/
MPI_CHK( mpi_exp_mod( &T1, &T, DP, &ctx->P, &ctx->RP ) );
MPI_CHK( mpi_exp_mod( &T2, &T, DQ, &ctx->Q, &ctx->RQ ) );
/*
* T = (T1 - T2) * (Q^-1 mod P) mod P
*/
MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );
/*
* T = T2 + T * Q
*/
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
2014-11-06 18:15:12 +01:00
#endif /* POLARSSL_RSA_NO_CRT */
2013-08-30 11:00:25 +02:00
if( f_rng != NULL )
{
/*
* Unblind
* T = T * Vf mod N
*/
MPI_CHK( mpi_mul_mpi( &T, &T, &ctx->Vf ) );
MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
}
olen = ctx->len;
MPI_CHK( mpi_write_binary( &T, output, olen ) );
cleanup:
2014-11-06 18:15:12 +01:00
#if defined(POLARSSL_THREADING_C)
if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif
mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &R );
if( f_rng != NULL )
{
#if defined(POLARSSL_RSA_NO_CRT)
mpi_free( &D_blind );
#else
mpi_free( &DP_blind );
mpi_free( &DQ_blind );
#endif
}
if( ret != 0 )
return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );
return( 0 );
}
#if defined(POLARSSL_PKCS1_V21)
/**
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
*
2011-11-10 14:33:51 +01:00
* \param dst buffer to mask
* \param dlen length of destination buffer
* \param src source of the mask generation
* \param slen length of the source buffer
* \param md_ctx message digest context to use
*/
static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
size_t slen, md_context_t *md_ctx )
{
unsigned char mask[POLARSSL_MD_MAX_SIZE];
unsigned char counter[4];
unsigned char *p;
unsigned int hlen;
size_t i, use_len;
memset( mask, 0, POLARSSL_MD_MAX_SIZE );
memset( counter, 0, 4 );
hlen = md_ctx->md_info->size;
// Generate and apply dbMask
//
p = dst;
while( dlen > 0 )
{
use_len = hlen;
if( dlen < hlen )
use_len = dlen;
md_starts( md_ctx );
md_update( md_ctx, src, slen );
md_update( md_ctx, counter, 4 );
md_finish( md_ctx, mask );
for( i = 0; i < use_len; ++i )
*p++ ^= mask[i];
counter[3]++;
dlen -= use_len;
}
polarssl_zeroize( mask, sizeof( mask ) );
}
#endif /* POLARSSL_PKCS1_V21 */
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
*/
int rsa_rsaes_oaep_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
const unsigned char *label, size_t label_len,
size_t ilen,
const unsigned char *input,
unsigned char *output )
{
size_t olen;
2012-01-14 19:10:38 +01:00
int ret;
unsigned char *p = output;
unsigned int hlen;
const md_info_t *md_info;
md_context_t md_ctx;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
if( f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_info = md_info_from_type( (md_type_t) ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
hlen = md_get_size( md_info );
// first comparison checks for overflow
if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
memset( output, 0, olen );
*p++ = 0;
// Generate a random octet string seed
//
if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
p += hlen;
// Construct DB
//
md( md_info, label, label_len, p );
p += hlen;
p += olen - 2 * hlen - 2 - ilen;
*p++ = 1;
memcpy( p, input, ilen );
md_init( &md_ctx );
if( ( ret = md_init_ctx( &md_ctx, md_info ) ) != 0 )
{
md_free( &md_ctx );
return( ret );
}
// maskedDB: Apply dbMask to DB
//
mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
&md_ctx );
// maskedSeed: Apply seedMask to seed
//
mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
&md_ctx );
md_free( &md_ctx );
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, output, output )
: rsa_private( ctx, f_rng, p_rng, output, output ) );
}
#endif /* POLARSSL_PKCS1_V21 */
#if defined(POLARSSL_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
*/
int rsa_rsaes_pkcs1_v15_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t ilen,
const unsigned char *input,
unsigned char *output )
{
size_t nb_pad, olen;
int ret;
unsigned char *p = output;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
// We don't check p_rng because it won't be dereferenced here
if( f_rng == NULL || input == NULL || output == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
// first comparison checks for overflow
if( ilen + 11 < ilen || olen < ilen + 11 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
nb_pad = olen - 3 - ilen;
*p++ = 0;
if( mode == RSA_PUBLIC )
{
*p++ = RSA_CRYPT;
while( nb_pad-- > 0 )
{
int rng_dl = 100;
do {
ret = f_rng( p_rng, p, 1 );
} while( *p == 0 && --rng_dl && ret == 0 );
// Check if RNG failed to generate data
//
if( rng_dl == 0 || ret != 0 )
2014-06-17 14:06:49 +02:00
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
p++;
}
}
else
{
*p++ = RSA_SIGN;
while( nb_pad-- > 0 )
*p++ = 0xFF;
}
*p++ = 0;
memcpy( p, input, ilen );
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, output, output )
: rsa_private( ctx, f_rng, p_rng, output, output ) );
}
#endif /* POLARSSL_PKCS1_V15 */
/*
* Add the message padding, then do an RSA operation
*/
int rsa_pkcs1_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t ilen,
const unsigned char *input,
unsigned char *output )
{
switch( ctx->padding )
{
#if defined(POLARSSL_PKCS1_V15)
case RSA_PKCS_V15:
return rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
input, output );
#endif
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
ilen, input, output );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
*/
int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
const unsigned char *label, size_t label_len,
size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len )
{
int ret;
size_t ilen, i, pad_len;
unsigned char *p, bad, pad_done;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
unsigned char lhash[POLARSSL_MD_MAX_SIZE];
unsigned int hlen;
const md_info_t *md_info;
md_context_t md_ctx;
2013-11-28 15:57:52 +01:00
/*
* Parameters sanity checks
*/
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ilen = ctx->len;
if( ilen < 16 || ilen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_info = md_info_from_type( (md_type_t) ctx->hash_id );
2013-11-28 15:57:52 +01:00
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
// checking for integer underflow
if( 2 * hlen + 2 > ilen )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
2013-11-28 15:57:52 +01:00
/*
* RSA operation
*/
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, input, buf )
: rsa_private( ctx, f_rng, p_rng, input, buf );
if( ret != 0 )
goto cleanup;
2013-11-28 15:57:52 +01:00
/*
* Unmask data and generate lHash
2013-11-28 15:57:52 +01:00
*/
hlen = md_get_size( md_info );
2016-02-09 15:51:35 +01:00
// checking for integer underflow
if( 2 * hlen + 2 > ilen )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_init( &md_ctx );
if( ( ret = md_init_ctx( &md_ctx, md_info ) ) != 0 )
{
md_free( &md_ctx );
return( ret );
}
2013-11-28 15:57:52 +01:00
/* Generate lHash */
md( md_info, label, label_len, lhash );
2013-11-28 15:57:52 +01:00
/* seed: Apply seedMask to maskedSeed */
mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
&md_ctx );
2013-11-28 15:57:52 +01:00
/* DB: Apply dbMask to maskedDB */
mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
&md_ctx );
md_free( &md_ctx );
2013-11-28 15:57:52 +01:00
/*
* Check contents, in "constant-time"
2013-11-28 15:57:52 +01:00
*/
p = buf;
bad = 0;
2013-11-28 15:57:52 +01:00
bad |= *p++; /* First byte must be 0 */
2013-11-28 15:57:52 +01:00
p += hlen; /* Skip seed */
/* Check lHash */
for( i = 0; i < hlen; i++ )
bad |= lhash[i] ^ *p++;
/* Get zero-padding len, but always read till end of buffer
* (minus one, for the 01 byte) */
pad_len = 0;
pad_done = 0;
for( i = 0; i < ilen - 2 * hlen - 2; i++ )
{
pad_done |= p[i];
pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
}
p += pad_len;
bad |= *p++ ^ 0x01;
/*
* The only information "leaked" is whether the padding was correct or not
* (eg, no data is copied if it was not correct). This meets the
* recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
* the different error conditions.
*/
if( bad != 0 )
{
ret = POLARSSL_ERR_RSA_INVALID_PADDING;
goto cleanup;
}
if( ilen - ( p - buf ) > output_max_len )
{
ret = POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE;
goto cleanup;
}
*olen = ilen - (p - buf);
memcpy( output, p, *olen );
ret = 0;
cleanup:
polarssl_zeroize( buf, sizeof( buf ) );
polarssl_zeroize( lhash, sizeof( lhash ) );
return( ret );
}
#endif /* POLARSSL_PKCS1_V21 */
#if defined(POLARSSL_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
*/
int rsa_rsaes_pkcs1_v15_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
int ret;
size_t ilen, pad_count = 0, i;
unsigned char *p, bad, pad_done = 0;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ilen = ctx->len;
if( ilen < 16 || ilen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, input, buf )
: rsa_private( ctx, f_rng, p_rng, input, buf );
if( ret != 0 )
goto cleanup;
p = buf;
bad = 0;
/*
* Check and get padding len in "constant-time"
*/
bad |= *p++; /* First byte must be 0 */
/* This test does not depend on secret data */
if( mode == RSA_PRIVATE )
{
bad |= *p++ ^ RSA_CRYPT;
/* Get padding len, but always read till end of buffer
* (minus one, for the 00 byte) */
for( i = 0; i < ilen - 3; i++ )
{
pad_done |= ((p[i] | (unsigned char)-p[i]) >> 7) ^ 1;
pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
}
p += pad_count;
bad |= *p++; /* Must be zero */
}
else
{
bad |= *p++ ^ RSA_SIGN;
/* Get padding len, but always read till end of buffer
* (minus one, for the 00 byte) */
for( i = 0; i < ilen - 3; i++ )
{
pad_done |= ( p[i] != 0xFF );
pad_count += ( pad_done == 0 );
}
p += pad_count;
bad |= *p++; /* Must be zero */
}
bad |= ( pad_count < 8 );
2016-02-08 14:59:25 +01:00
if( bad )
{
ret = POLARSSL_ERR_RSA_INVALID_PADDING;
goto cleanup;
}
if( ilen - ( p - buf ) > output_max_len )
{
ret = POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE;
goto cleanup;
}
*olen = ilen - (p - buf);
memcpy( output, p, *olen );
ret = 0;
cleanup:
polarssl_zeroize( buf, sizeof( buf ) );
return( ret );
}
#endif /* POLARSSL_PKCS1_V15 */
/*
* Do an RSA operation, then remove the message padding
*/
int rsa_pkcs1_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
switch( ctx->padding )
{
#if defined(POLARSSL_PKCS1_V15)
case RSA_PKCS_V15:
return rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
input, output, output_max_len );
#endif
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
olen, input, output,
output_max_len );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
*/
int rsa_rsassa_pss_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
size_t olen;
unsigned char *p = sig;
unsigned char salt[POLARSSL_MD_MAX_SIZE];
2012-01-14 19:10:38 +01:00
unsigned int slen, hlen, offset = 0;
int ret;
size_t msb;
const md_info_t *md_info;
md_context_t md_ctx;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
if( f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
if( md_alg != POLARSSL_MD_NONE )
{
// Gather length of hash to sign
//
md_info = md_info_from_type( md_alg );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hashlen = md_get_size( md_info );
}
md_info = md_info_from_type( (md_type_t) ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
slen = hlen;
if( olen < hlen + slen + 2 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
memset( sig, 0, olen );
// Generate salt of length slen
//
if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
// Note: EMSA-PSS encoding is over the length of N - 1 bits
//
msb = mpi_msb( &ctx->N ) - 1;
p += olen - hlen * 2 - 2;
*p++ = 0x01;
memcpy( p, salt, slen );
p += slen;
md_init( &md_ctx );
if( ( ret = md_init_ctx( &md_ctx, md_info ) ) != 0 )
{
md_free( &md_ctx );
/* No need to zeroize salt: we didn't use it. */
return( ret );
}
// Generate H = Hash( M' )
//
md_starts( &md_ctx );
md_update( &md_ctx, p, 8 );
md_update( &md_ctx, hash, hashlen );
md_update( &md_ctx, salt, slen );
md_finish( &md_ctx, p );
polarssl_zeroize( salt, sizeof( salt ) );
// Compensate for boundary condition when applying mask
//
if( msb % 8 == 0 )
offset = 1;
// maskedDB: Apply dbMask to DB
//
mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
md_free( &md_ctx );
msb = mpi_msb( &ctx->N ) - 1;
sig[0] &= 0xFF >> ( olen * 8 - msb );
p += hlen;
*p++ = 0xBC;
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, sig )
: rsa_private( ctx, f_rng, p_rng, sig, sig ) );
}
#endif /* POLARSSL_PKCS1_V21 */
#if defined(POLARSSL_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
*/
/*
* Do an RSA operation to sign the message digest
*/
int rsa_rsassa_pkcs1_v15_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
size_t nb_pad, olen, oid_size = 0;
unsigned char *p = sig;
2014-07-24 10:38:01 +02:00
const char *oid = NULL;
unsigned char *sig_try = NULL, *verif = NULL;
size_t i;
unsigned char diff;
volatile unsigned char diff_no_optimize;
int ret;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
nb_pad = olen - 3;
if( md_alg != POLARSSL_MD_NONE )
{
const md_info_t *md_info = md_info_from_type( md_alg );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
if( oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
nb_pad -= 10 + oid_size;
hashlen = md_get_size( md_info );
}
nb_pad -= hashlen;
if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
*p++ = 0;
*p++ = RSA_SIGN;
memset( p, 0xFF, nb_pad );
p += nb_pad;
*p++ = 0;
if( md_alg == POLARSSL_MD_NONE )
{
memcpy( p, hash, hashlen );
}
else
{
/*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest }
*
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
*
* Digest ::= OCTET STRING
*/
*p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED;
*p++ = (unsigned char) ( 0x08 + oid_size + hashlen );
*p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED;
*p++ = (unsigned char) ( 0x04 + oid_size );
*p++ = ASN1_OID;
*p++ = oid_size & 0xFF;
memcpy( p, oid, oid_size );
p += oid_size;
*p++ = ASN1_NULL;
*p++ = 0x00;
*p++ = ASN1_OCTET_STRING;
*p++ = hashlen;
memcpy( p, hash, hashlen );
}
if( mode == RSA_PUBLIC )
return( rsa_public( ctx, sig, sig ) );
/*
* In order to prevent Lenstra's attack, make the signature in a
* temporary buffer and check it before returning it.
*/
sig_try = polarssl_malloc( ctx->len );
if( sig_try == NULL )
return( POLARSSL_ERR_MPI_MALLOC_FAILED );
verif = polarssl_malloc( ctx->len );
if( verif == NULL )
{
polarssl_free( sig_try );
return( POLARSSL_ERR_MPI_MALLOC_FAILED );
}
MPI_CHK( rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
MPI_CHK( rsa_public( ctx, sig_try, verif ) );
/* Compare in constant time just in case */
for( diff = 0, i = 0; i < ctx->len; i++ )
diff |= verif[i] ^ sig[i];
diff_no_optimize = diff;
if( diff_no_optimize != 0 )
{
ret = POLARSSL_ERR_RSA_PRIVATE_FAILED;
goto cleanup;
}
memcpy( sig, sig_try, ctx->len );
cleanup:
polarssl_free( sig_try );
polarssl_free( verif );
return( ret );
}
#endif /* POLARSSL_PKCS1_V15 */
/*
* Do an RSA operation to sign the message digest
*/
int rsa_pkcs1_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
switch( ctx->padding )
{
#if defined(POLARSSL_PKCS1_V15)
case RSA_PKCS_V15:
return rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
hashlen, hash, sig );
#endif
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
hashlen, hash, sig );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
2014-06-03 11:44:06 +02:00
int rsa_rsassa_pss_verify_ext( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
md_type_t mgf1_hash_id,
int expected_salt_len,
const unsigned char *sig )
{
int ret;
size_t siglen;
unsigned char *p;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
unsigned char result[POLARSSL_MD_MAX_SIZE];
unsigned char zeros[8];
unsigned int hlen;
size_t slen, msb;
const md_info_t *md_info;
md_context_t md_ctx;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
siglen = ctx->len;
if( siglen < 16 || siglen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, buf )
: rsa_private( ctx, f_rng, p_rng, sig, buf );
if( ret != 0 )
return( ret );
p = buf;
if( buf[siglen - 1] != 0xBC )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
if( md_alg != POLARSSL_MD_NONE )
{
// Gather length of hash to sign
//
md_info = md_info_from_type( md_alg );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hashlen = md_get_size( md_info );
}
2014-06-03 11:44:06 +02:00
md_info = md_info_from_type( mgf1_hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
2014-06-03 11:44:06 +02:00
slen = siglen - hlen - 1; /* Currently length of salt + padding */
memset( zeros, 0, 8 );
// Note: EMSA-PSS verification is over the length of N - 1 bits
//
msb = mpi_msb( &ctx->N ) - 1;
// Compensate for boundary condition when applying mask
//
if( msb % 8 == 0 )
{
p++;
siglen -= 1;
}
if( buf[0] >> ( 8 - siglen * 8 + msb ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_init( &md_ctx );
if( ( ret = md_init_ctx( &md_ctx, md_info ) ) != 0 )
{
md_free( &md_ctx );
return( ret );
}
mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
buf[0] &= 0xFF >> ( siglen * 8 - msb );
while( p < buf + siglen && *p == 0 )
p++;
if( p == buf + siglen ||
*p++ != 0x01 )
{
md_free( &md_ctx );
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
2014-06-03 11:44:06 +02:00
/* Actual salt len */
slen -= p - buf;
2014-06-03 11:44:06 +02:00
if( expected_salt_len != RSA_SALT_LEN_ANY &&
slen != (size_t) expected_salt_len )
{
md_free( &md_ctx );
2014-06-03 11:44:06 +02:00
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
// Generate H = Hash( M' )
//
md_starts( &md_ctx );
md_update( &md_ctx, zeros, 8 );
md_update( &md_ctx, hash, hashlen );
md_update( &md_ctx, p, slen );
md_finish( &md_ctx, result );
md_free( &md_ctx );
if( memcmp( p + slen, result, hlen ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
2014-06-03 11:44:06 +02:00
/*
* Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
int rsa_rsassa_pss_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig )
{
md_type_t mgf1_hash_id = ( ctx->hash_id != POLARSSL_MD_NONE )
2014-06-05 18:07:20 +02:00
? (md_type_t) ctx->hash_id
2014-06-03 11:44:06 +02:00
: md_alg;
return( rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
md_alg, hashlen, hash,
mgf1_hash_id, RSA_SALT_LEN_ANY,
sig ) );
}
#endif /* POLARSSL_PKCS1_V21 */
#if defined(POLARSSL_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
*/
int rsa_rsassa_pkcs1_v15_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig )
{
int ret;
size_t len, siglen, asn1_len;
unsigned char *p, *p0, *end;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
md_type_t msg_md_alg;
const md_info_t *md_info;
asn1_buf oid;
if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
siglen = ctx->len;
if( siglen < 16 || siglen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, buf )
: rsa_private( ctx, f_rng, p_rng, sig, buf );
if( ret != 0 )
return( ret );
p = buf;
if( *p++ != 0 || *p++ != RSA_SIGN )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
while( *p != 0 )
{
if( p >= buf + siglen - 1 || *p != 0xFF )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
p++;
}
p++;
len = siglen - ( p - buf );
if( len == hashlen && md_alg == POLARSSL_MD_NONE )
{
if( memcmp( p, hash, hashlen ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
md_info = md_info_from_type( md_alg );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hashlen = md_get_size( md_info );
end = p + len;
/*
* Parse the ASN.1 structure inside the PKCS#1 v1.5 structure.
* Insist on 2-byte length tags, to protect against variants of
* Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification.
*/
p0 = p;
if( ( ret = asn1_get_tag( &p, end, &asn1_len,
ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( p != p0 + 2 || asn1_len + 2 != len )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
p0 = p;
if( ( ret = asn1_get_tag( &p, end, &asn1_len,
ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( p != p0 + 2 || asn1_len + 6 + hashlen != len )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
p0 = p;
if( ( ret = asn1_get_tag( &p, end, &oid.len, ASN1_OID ) ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( p != p0 + 2 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
oid.p = p;
p += oid.len;
if( oid_get_md_alg( &oid, &msg_md_alg ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( md_alg != msg_md_alg )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
/*
* assume the algorithm parameters must be NULL
*/
p0 = p;
if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_NULL ) ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( p != p0 + 2 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
p0 = p;
if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_OCTET_STRING ) ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( p != p0 + 2 || asn1_len != hashlen )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( memcmp( p, hash, hashlen ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
p += hashlen;
if( p != end )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
return( 0 );
}
#endif /* POLARSSL_PKCS1_V15 */
/*
* Do an RSA operation and check the message digest
*/
int rsa_pkcs1_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig )
{
switch( ctx->padding )
{
#if defined(POLARSSL_PKCS1_V15)
case RSA_PKCS_V15:
return rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
hashlen, hash, sig );
#endif
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
hashlen, hash, sig );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
2013-08-14 13:39:57 +02:00
/*
* Copy the components of an RSA key
*/
int rsa_copy( rsa_context *dst, const rsa_context *src )
{
int ret;
dst->ver = src->ver;
dst->len = src->len;
MPI_CHK( mpi_copy( &dst->N, &src->N ) );
MPI_CHK( mpi_copy( &dst->E, &src->E ) );
MPI_CHK( mpi_copy( &dst->D, &src->D ) );
MPI_CHK( mpi_copy( &dst->P, &src->P ) );
MPI_CHK( mpi_copy( &dst->Q, &src->Q ) );
MPI_CHK( mpi_copy( &dst->DP, &src->DP ) );
MPI_CHK( mpi_copy( &dst->DQ, &src->DQ ) );
MPI_CHK( mpi_copy( &dst->QP, &src->QP ) );
MPI_CHK( mpi_copy( &dst->RN, &src->RN ) );
MPI_CHK( mpi_copy( &dst->RP, &src->RP ) );
MPI_CHK( mpi_copy( &dst->RQ, &src->RQ ) );
MPI_CHK( mpi_copy( &dst->Vi, &src->Vi ) );
MPI_CHK( mpi_copy( &dst->Vf, &src->Vf ) );
2013-08-14 13:39:57 +02:00
dst->padding = src->padding;
2014-03-25 15:58:35 +01:00
dst->hash_id = src->hash_id;
2013-08-14 13:39:57 +02:00
cleanup:
if( ret != 0 )
rsa_free( dst );
return( ret );
}
/*
* Free the components of an RSA key
*/
void rsa_free( rsa_context *ctx )
{
mpi_free( &ctx->Vi ); mpi_free( &ctx->Vf );
mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );
mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );
mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D );
mpi_free( &ctx->E ); mpi_free( &ctx->N );
2013-09-29 14:58:17 +02:00
#if defined(POLARSSL_THREADING_C)
polarssl_mutex_free( &ctx->mutex );
#endif
}
#if defined(POLARSSL_SELF_TEST)
#include "polarssl/sha1.h"
/*
* Example RSA-1024 keypair, for test purposes
*/
#define KEY_LEN 128
#define RSA_N "9292758453063D803DD603D5E777D788" \
"8ED1D5BF35786190FA2F23EBC0848AEA" \
"DDA92CA6C3D80B32C4D109BE0F36D6AE" \
"7130B9CED7ACDF54CFC7555AC14EEBAB" \
"93A89813FBF3C4F8066D2D800F7C38A8" \
"1AE31942917403FF4946B0A83D3D3E05" \
"EE57C6F5F5606FB5D4BC6CD34EE0801A" \
"5E94BB77B07507233A0BC7BAC8F90F79"
#define RSA_E "10001"
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
"66CA472BC44D253102F8B4A9D3BFA750" \
"91386C0077937FE33FA3252D28855837" \
"AE1B484A8A9A45F7EE8C0C634F99E8CD" \
"DF79C5CE07EE72C7F123142198164234" \
"CABB724CF78B8173B9F880FC86322407" \
"AF1FEDFDDE2BEB674CA15F3E81A1521E" \
"071513A1E85B5DFA031F21ECAE91A34D"
#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
"2C01CAD19EA484A87EA4377637E75500" \
"FCB2005C5C7DD6EC4AC023CDA285D796" \
"C3D9E75E1EFC42488BB4F1D13AC30A57"
#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
"E211C2B9E5DB1ED0BF61D0D9899620F4" \
"910E4168387E3C30AA1E00C339A79508" \
"8452DD96A9A5EA5D9DCA68DA636032AF"
#define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \
"3C94D22288ACD763FD8E5600ED4A702D" \
"F84198A5F06C2E72236AE490C93F07F8" \
"3CC559CD27BC2D1CA488811730BB5725"
#define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \
"D8AAEA56749EA28623272E4F7D0592AF" \
"7C1F1313CAC9471B5C523BFE592F517B" \
"407A1BD76C164B93DA2D32A383E58357"
#define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \
"F38D18D2B2F0E2DD275AA977E2BF4411" \
"F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
"A74206CEC169D74BF5A8C50D6F48EA08"
#define PT_LEN 24
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
"\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
#if defined(POLARSSL_PKCS1_V15)
static int myrand( void *rng_state, unsigned char *output, size_t len )
{
#if !defined(__OpenBSD__)
size_t i;
if( rng_state != NULL )
rng_state = NULL;
for( i = 0; i < len; ++i )
output[i] = rand();
#else
if( rng_state != NULL )
rng_state = NULL;
arc4random_buf( output, len );
#endif /* !OpenBSD */
return( 0 );
}
#endif /* POLARSSL_PKCS1_V15 */
/*
* Checkup routine
*/
int rsa_self_test( int verbose )
{
int ret = 0;
#if defined(POLARSSL_PKCS1_V15)
size_t len;
rsa_context rsa;
unsigned char rsa_plaintext[PT_LEN];
unsigned char rsa_decrypted[PT_LEN];
unsigned char rsa_ciphertext[KEY_LEN];
#if defined(POLARSSL_SHA1_C)
unsigned char sha1sum[20];
#endif
rsa_init( &rsa, RSA_PKCS_V15, 0 );
rsa.len = KEY_LEN;
MPI_CHK( mpi_read_string( &rsa.N , 16, RSA_N ) );
MPI_CHK( mpi_read_string( &rsa.E , 16, RSA_E ) );
MPI_CHK( mpi_read_string( &rsa.D , 16, RSA_D ) );
MPI_CHK( mpi_read_string( &rsa.P , 16, RSA_P ) );
MPI_CHK( mpi_read_string( &rsa.Q , 16, RSA_Q ) );
MPI_CHK( mpi_read_string( &rsa.DP, 16, RSA_DP ) );
MPI_CHK( mpi_read_string( &rsa.DQ, 16, RSA_DQ ) );
MPI_CHK( mpi_read_string( &rsa.QP, 16, RSA_QP ) );
if( verbose != 0 )
polarssl_printf( " RSA key validation: " );
if( rsa_check_pubkey( &rsa ) != 0 ||
rsa_check_privkey( &rsa ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
polarssl_printf( "passed\n PKCS#1 encryption : " );
memcpy( rsa_plaintext, RSA_PT, PT_LEN );
if( rsa_pkcs1_encrypt( &rsa, myrand, NULL, RSA_PUBLIC, PT_LEN,
rsa_plaintext, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
polarssl_printf( "passed\n PKCS#1 decryption : " );
if( rsa_pkcs1_decrypt( &rsa, myrand, NULL, RSA_PRIVATE, &len,
rsa_ciphertext, rsa_decrypted,
sizeof(rsa_decrypted) ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
#if defined(POLARSSL_SHA1_C)
if( verbose != 0 )
polarssl_printf( "passed\n PKCS#1 data sign : " );
sha1( rsa_plaintext, PT_LEN, sha1sum );
2013-08-30 11:00:25 +02:00
if( rsa_pkcs1_sign( &rsa, myrand, NULL, RSA_PRIVATE, POLARSSL_MD_SHA1, 0,
sha1sum, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
polarssl_printf( "passed\n PKCS#1 sig. verify: " );
if( rsa_pkcs1_verify( &rsa, NULL, NULL, RSA_PUBLIC, POLARSSL_MD_SHA1, 0,
sha1sum, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
polarssl_printf( "passed\n\n" );
#endif /* POLARSSL_SHA1_C */
cleanup:
rsa_free( &rsa );
#else /* POLARSSL_PKCS1_V15 */
((void) verbose);
#endif /* POLARSSL_PKCS1_V15 */
return( ret );
}
#endif /* POLARSSL_SELF_TEST */
#endif /* POLARSSL_RSA_C */