mbedtls/include/tinycrypt/ecc.h

546 lines
20 KiB
C
Raw Normal View History

/* ecc.h - TinyCrypt interface to common ECC functions */
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to common ECC functions.
*
* Overview: This software is an implementation of common functions
* necessary to elliptic curve cryptography. This implementation uses
* curve NIST p-256.
*
* Security: The curve NIST p-256 provides approximately 128 bits of security.
*
*/
#ifndef __TC_UECC_H__
#define __TC_UECC_H__
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Word size (4 bytes considering 32-bits architectures) */
#define uECC_WORD_SIZE 4
/* setting max number of calls to prng: */
#ifndef uECC_RNG_MAX_TRIES
#define uECC_RNG_MAX_TRIES 64
#endif
/* defining data types to store word and bit counts: */
typedef int8_t wordcount_t;
typedef int16_t bitcount_t;
/* defining data type for comparison result: */
typedef int8_t cmpresult_t;
/* defining data type to store ECC coordinate/point in 32bits words: */
typedef unsigned int uECC_word_t;
/* defining data type to store an ECC coordinate/point in 64bits words: */
typedef uint64_t uECC_dword_t;
/* defining masks useful for ecc computations: */
#define HIGH_BIT_SET 0x80000000
#define uECC_WORD_BITS 32
#define uECC_WORD_BITS_SHIFT 5
#define uECC_WORD_BITS_MASK 0x01F
/* Number of words of 32 bits to represent an element of the the curve p-256: */
#define NUM_ECC_WORDS 8
/* Number of bytes to represent an element of the the curve p-256: */
#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
/* structure that represents an elliptic curve (e.g. p256):*/
struct uECC_Curve_t;
typedef const struct uECC_Curve_t * uECC_Curve;
struct uECC_Curve_t {
wordcount_t num_words;
wordcount_t num_bytes;
bitcount_t num_n_bits;
uECC_word_t p[NUM_ECC_WORDS];
uECC_word_t n[NUM_ECC_WORDS];
uECC_word_t G[NUM_ECC_WORDS * 2];
uECC_word_t b[NUM_ECC_WORDS];
void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1,
uECC_Curve curve);
void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
};
/*
* @brief computes doubling of point ion jacobian coordinates, in place.
* @param X1 IN/OUT -- x coordinate
* @param Y1 IN/OUT -- y coordinate
* @param Z1 IN/OUT -- z coordinate
* @param curve IN -- elliptic curve
*/
void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
uECC_word_t * Z1, uECC_Curve curve);
/*
* @brief Computes x^3 + ax + b. result must not overlap x.
* @param result OUT -- x^3 + ax + b
* @param x IN -- value of x
* @param curve IN -- elliptic curve
*/
void x_side_default(uECC_word_t *result, const uECC_word_t *x,
uECC_Curve curve);
/*
* @brief Computes result = product % curve_p
* from http://www.nsa.gov/ia/_files/nist-routines.pdf
* @param result OUT -- product % curve_p
* @param product IN -- value to be reduced mod curve_p
*/
void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
/* Bytes to words ordering: */
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
#define BITS_TO_WORDS(num_bits) \
((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
/* definition of curve NIST p-256: */
static const struct uECC_Curve_t curve_secp256r1 = {
NUM_ECC_WORDS,
NUM_ECC_BYTES,
256, /* num_n_bits */ {
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
}, {
BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
}, {
BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
}, {
BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
},
&double_jacobian_default,
&x_side_default,
&vli_mmod_fast_secp256r1
};
uECC_Curve uECC_secp256r1(void);
/*
* @brief Generates a random integer in the range 0 < random < top.
* Both random and top have num_words words.
* @param random OUT -- random integer in the range 0 < random < top
* @param top IN -- upper limit
* @param num_words IN -- number of words
* @return a random integer in the range 0 < random < top
*/
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
wordcount_t num_words);
/* uECC_RNG_Function type
* The RNG function should fill 'size' random bytes into 'dest'. It should
* return 1 if 'dest' was filled with random data, or 0 if the random data could
* not be generated. The filled-in values should be either truly random, or from
* a cryptographically-secure PRNG.
*
* A correctly functioning RNG function must be set (using uECC_set_rng())
* before calling uECC_make_key() or uECC_sign().
*
* Setting a correctly functioning RNG function improves the resistance to
* side-channel attacks for uECC_shared_secret().
*
* A correct RNG function is set by default. If you are building on another
* POSIX-compliant system that supports /dev/random or /dev/urandom, you can
* define uECC_POSIX to use the predefined RNG.
*/
typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
/*
* @brief Set the function that will be used to generate random bytes. The RNG
* function should return 1 if the random data was generated, or 0 if the random
* data could not be generated.
*
* @note On platforms where there is no predefined RNG function, this must be
* called before uECC_make_key() or uECC_sign() are used.
*
* @param rng_function IN -- function that will be used to generate random bytes
*/
void uECC_set_rng(uECC_RNG_Function rng_function);
/*
* @brief provides current uECC_RNG_Function.
* @return Returns the function that will be used to generate random bytes.
*/
uECC_RNG_Function uECC_get_rng(void);
/*
* @brief computes the size of a private key for the curve in bytes.
* @param curve IN -- elliptic curve
* @return size of a private key for the curve in bytes.
*/
int uECC_curve_private_key_size(uECC_Curve curve);
/*
* @brief computes the size of a public key for the curve in bytes.
* @param curve IN -- elliptic curve
* @return the size of a public key for the curve in bytes.
*/
int uECC_curve_public_key_size(uECC_Curve curve);
/*
* @brief Compute the corresponding public key for a private key.
* @param private_key IN -- The private key to compute the public key for
* @param public_key OUT -- Will be filled in with the corresponding public key
* @param curve
* @return Returns 1 if key was computed successfully, 0 if an error occurred.
*/
int uECC_compute_public_key(const uint8_t *private_key,
uint8_t *public_key, uECC_Curve curve);
/*
* @brief Compute public-key.
* @return corresponding public-key.
* @param result OUT -- public-key
* @param private_key IN -- private-key
* @param curve IN -- elliptic curve
*/
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key, uECC_Curve curve);
/*
* @brief Regularize the bitcount for the private key so that attackers cannot
* use a side channel attack to learn the number of leading zeros.
* @return Regularized k
* @param k IN -- private-key
* @param k0 IN/OUT -- regularized k
* @param k1 IN/OUT -- regularized k
* @param curve IN -- elliptic curve
*/
uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
uECC_word_t *k1, uECC_Curve curve);
/*
* @brief Point multiplication algorithm using Montgomery's ladder with co-Z
* coordinates. See http://eprint.iacr.org/2011/338.pdf.
* @note Result may overlap point.
* @param result OUT -- returns scalar*point
* @param point IN -- elliptic curve point
* @param scalar IN -- scalar
* @param initial_Z IN -- initial value for z
* @param num_bits IN -- number of bits in scalar
* @param curve IN -- elliptic curve
*/
void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
const uECC_word_t * scalar, const uECC_word_t * initial_Z,
bitcount_t num_bits, uECC_Curve curve);
/*
* @brief Constant-time comparison to zero - secure way to compare long integers
* @param vli IN -- very long integer
* @param num_words IN -- number of words in the vli
* @return 1 if vli == 0, 0 otherwise.
*/
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
/*
* @brief Check if 'point' is the point at infinity
* @param point IN -- elliptic curve point
* @param curve IN -- elliptic curve
* @return if 'point' is the point at infinity, 0 otherwise.
*/
uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
/*
* @brief computes the sign of left - right, in constant time.
* @param left IN -- left term to be compared
* @param right IN -- right term to be compared
* @param num_words IN -- number of words
* @return the sign of left - right
*/
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief computes sign of left - right, not in constant time.
* @note should not be used if inputs are part of a secret
* @param left IN -- left term to be compared
* @param right IN -- right term to be compared
* @param num_words IN -- number of words
* @return the sign of left - right
*/
cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief Computes result = (left - right) % mod.
* @note Assumes that (left < mod) and (right < mod), and that result does not
* overlap mod.
* @param result OUT -- (left - right) % mod
* @param left IN -- leftright term in modular subtraction
* @param right IN -- right term in modular subtraction
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
* P => P', Q => P + Q
* @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
* @param X1 IN -- x coordinate of P
* @param Y1 IN -- y coordinate of P
* @param X2 IN -- x coordinate of Q
* @param Y2 IN -- y coordinate of Q
* @param curve IN -- elliptic curve
*/
void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
uECC_word_t * Y2, uECC_Curve curve);
/*
* @brief Computes (x1 * z^2, y1 * z^3)
* @param X1 IN -- previous x1 coordinate
* @param Y1 IN -- previous y1 coordinate
* @param Z IN -- z value
* @param curve IN -- elliptic curve
*/
void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
uECC_Curve curve);
/*
* @brief Check if bit is set.
* @return Returns nonzero if bit 'bit' of vli is set.
* @warning It is assumed that the value provided in 'bit' is within the
* boundaries of the word-array 'vli'.
* @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
* {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
* of 4 uECC_word_t elements.
*/
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
/*
* @brief Computes result = product % mod, where product is 2N words long.
* @param result OUT -- product % mod
* @param mod IN -- module
* @param num_words IN -- number of words
* @warning Currently only designed to work for curve_p or curve_n.
*/
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
const uECC_word_t *mod, wordcount_t num_words);
/*
* @brief Computes modular product (using curve->mmod_fast)
* @param result OUT -- (left * right) mod % curve_p
* @param left IN -- left term in product
* @param right IN -- right term in product
* @param curve IN -- elliptic curve
*/
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, uECC_Curve curve);
/*
* @brief Computes result = left - right.
* @note Can modify in place.
* @param result OUT -- left - right
* @param left IN -- left term in subtraction
* @param right IN -- right term in subtraction
* @param num_words IN -- number of words
* @return borrow
*/
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words);
/*
* @brief Constant-time comparison function(secure way to compare long ints)
* @param left IN -- left term in comparison
* @param right IN -- right term in comparison
* @param num_words IN -- number of words
* @return Returns 0 if left == right, 1 otherwise.
*/
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief Computes (left * right) % mod
* @param result OUT -- (left * right) % mod
* @param left IN -- left term in product
* @param right IN -- right term in product
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Computes (1 / input) % mod
* @note All VLIs are the same size.
* @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
* @param result OUT -- (1 / input) % mod
* @param input IN -- value to be modular inverted
* @param mod IN -- mod
* @param num_words -- number of words
*/
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
const uECC_word_t *mod, wordcount_t num_words);
/*
* @brief Sets dest = src.
* @param dest OUT -- destination buffer
* @param src IN -- origin buffer
* @param num_words IN -- number of words
*/
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
wordcount_t num_words);
/*
* @brief Computes (left + right) % mod.
* @note Assumes that (left < mod) and right < mod), and that result does not
* overlap mod.
* @param result OUT -- (left + right) % mod.
* @param left IN -- left term in addition
* @param right IN -- right term in addition
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Counts the number of bits required to represent vli.
* @param vli IN -- very long integer
* @param max_words IN -- number of words
* @return number of bits in given vli
*/
bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
const wordcount_t max_words);
/*
* @brief Erases (set to 0) vli
* @param vli IN -- very long integer
* @param num_words IN -- number of words
*/
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
/*
* @brief check if it is a valid point in the curve
* @param point IN -- point to be checked
* @param curve IN -- elliptic curve
* @return 0 if point is valid
* @exception returns -1 if it is a point at infinity
* @exception returns -2 if x or y is smaller than p,
* @exception returns -3 if y^2 != x^3 + ax + b.
*/
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
/*
* @brief Check if a public key is valid.
* @param public_key IN -- The public key to be checked.
* @return returns 0 if the public key is valid
* @exception returns -1 if it is a point at infinity
* @exception returns -2 if x or y is smaller than p,
* @exception returns -3 if y^2 != x^3 + ax + b.
* @exception returns -4 if public key is the group generator.
*
* @note Note that you are not required to check for a valid public key before
* using any other uECC functions. However, you may wish to avoid spending CPU
* time computing a shared secret or verifying a signature using an invalid
* public key.
*/
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
/*
* @brief Converts an integer in uECC native format to big-endian bytes.
* @param bytes OUT -- bytes representation
* @param num_bytes IN -- number of bytes
* @param native IN -- uECC native representation
*/
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
const unsigned int *native);
/*
* @brief Converts big-endian bytes to an integer in uECC native format.
* @param native OUT -- uECC native representation
* @param bytes IN -- bytes representation
* @param num_bytes IN -- number of bytes
*/
void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
int num_bytes);
#ifdef __cplusplus
}
#endif
#endif /* __TC_UECC_H__ */