mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-11-22 11:35:44 +01:00
Implement randomized coordinates in ecp_mul()
This commit is contained in:
parent
c75c56fef7
commit
07de4b1d08
@ -30,6 +30,17 @@
|
||||
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
|
||||
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
|
||||
* RFC 4492 for the related TLS structures and constants
|
||||
*
|
||||
* [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
|
||||
* small memory and fast elliptic scalar multiplications secure against
|
||||
* side channel attacks. In : Topics in Cryptology—CT-RSA 2003. Springer
|
||||
* Berlin Heidelberg, 2003. p. 328-343.
|
||||
* <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
|
||||
*
|
||||
* [2] CORON, Jean-Sébastien. Resistance against differential power analysis
|
||||
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
|
||||
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
|
||||
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
|
||||
*/
|
||||
|
||||
#include "polarssl/config.h"
|
||||
@ -51,7 +62,7 @@
|
||||
#if defined(POLARSSL_SELF_TEST)
|
||||
/*
|
||||
* Counts of point addition and doubling operations.
|
||||
* Used to test resistance of point multiplication to SPA/timing attacks.
|
||||
* Used to test resistance of point multiplication to simple timing attacks.
|
||||
*/
|
||||
unsigned long add_count, dbl_count;
|
||||
#endif
|
||||
@ -777,7 +788,7 @@ cleanup:
|
||||
* (See for example Cohen's "A Course in Computational Algebraic Number
|
||||
* Theory", Algorithm 10.3.4.)
|
||||
*
|
||||
* Warning: fails if one of the points is zero!
|
||||
* Warning: fails (returning an error) if one of the points is zero!
|
||||
* This should never happen, see choice of w in ecp_mul().
|
||||
*/
|
||||
static int ecp_normalize_many( const ecp_group *grp,
|
||||
@ -1049,11 +1060,10 @@ cleanup:
|
||||
|
||||
/*
|
||||
* Compute a modified width-w non-adjacent form (NAF) of a number,
|
||||
* with a fixed pattern for resistance to SPA/timing attacks,
|
||||
* see <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
|
||||
* (The resulting multiplication algorithm can also been seen as a
|
||||
* modification of 2^w-ary multiplication, with signed coefficients,
|
||||
* all of them odd.)
|
||||
* with a fixed pattern for resistance to simple timing attacks (even SPA),
|
||||
* see [1]. (The resulting multiplication algorithm can also been seen as a
|
||||
* modification of 2^w-ary multiplication, with signed coefficients, all of
|
||||
* them odd.)
|
||||
*
|
||||
* Input:
|
||||
* m must be an odd positive mpi less than w * k bits long
|
||||
@ -1144,6 +1154,51 @@ cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Randomize jacobian coordinates:
|
||||
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
|
||||
* This is sort of the reverse operation of ecp_normalize().
|
||||
*/
|
||||
static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
||||
{
|
||||
int ret;
|
||||
mpi l, ll;
|
||||
size_t p_size = (grp->pbits + 7) / 8;
|
||||
int count = 0;
|
||||
|
||||
mpi_init( &l ); mpi_init( &ll );
|
||||
|
||||
/* Generate l such that 1 < l < p */
|
||||
do
|
||||
{
|
||||
mpi_fill_random( &l, p_size, f_rng, p_rng );
|
||||
|
||||
while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
|
||||
mpi_shift_r( &l, 1 );
|
||||
|
||||
if( count++ > 10 )
|
||||
return( POLARSSL_ERR_ECP_GENERIC );
|
||||
}
|
||||
while( mpi_cmp_int( &l, 1 ) <= 0 );
|
||||
|
||||
/* Z = l * Z */
|
||||
MPI_CHK( mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
|
||||
|
||||
/* X = l^2 * X */
|
||||
MPI_CHK( mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
|
||||
MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
|
||||
|
||||
/* Y = l^3 * Y */
|
||||
MPI_CHK( mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
|
||||
MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
|
||||
|
||||
cleanup:
|
||||
mpi_free( &l ); mpi_free( &ll );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Maximum length of the precomputed table
|
||||
*/
|
||||
@ -1159,11 +1214,15 @@ cleanup:
|
||||
/*
|
||||
* Integer multiplication: R = m * P
|
||||
*
|
||||
* Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed()
|
||||
* and <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
|
||||
* Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
|
||||
*
|
||||
* This function executes a fixed number of operations for
|
||||
* random m in the range 0 .. 2^nbits - 1.
|
||||
*
|
||||
* As an additional countermeasure against potential elaborate timing attacks,
|
||||
* we randomize coordinates after each addition. This was suggested as a
|
||||
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
|
||||
* we use jacobian coordinates, not standard projective coordinates).
|
||||
*/
|
||||
int ecp_mul( const ecp_group *grp, ecp_point *R,
|
||||
const mpi *m, const ecp_point *P,
|
||||
@ -1176,9 +1235,6 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
|
||||
ecp_point Q, T[ MAX_PRE_LEN ];
|
||||
mpi M;
|
||||
|
||||
((void) f_rng);
|
||||
((void) p_rng);
|
||||
|
||||
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
|
||||
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
||||
|
||||
@ -1241,6 +1297,10 @@ int ecp_mul( const ecp_group *grp, ecp_point *R,
|
||||
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
|
||||
}
|
||||
|
||||
/* Countermeasure (see comments above) */
|
||||
if( f_rng != NULL )
|
||||
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
|
||||
|
||||
if( i == 0 )
|
||||
break;
|
||||
i--;
|
||||
|
Loading…
Reference in New Issue
Block a user