Flag SCA_CM encrypt/decrypt functions

There is a 50% performance drop in the SCA_CM enabled encrypt and
decrypt functions. Therefore use the older version of encrypt/decypt
functions when SCA_CM is disabled.
This commit is contained in:
Arto Kinnunen 2020-01-16 17:20:51 +02:00
parent 2b24f4280f
commit 311ab594d7
2 changed files with 182 additions and 37 deletions

View File

@ -640,10 +640,13 @@
* Add countermeasures against possible side-channel-attack to AES calculation.
*
* Uncommenting this macro adds additional calculation rounds to AES
* calculation. Additional rounds are using random data and can occur in any
* AES calculation round.
* calculation. Additional rounds are using random data for calculation. The
* additional rounds are added to:
* -initial key addition phase
* -before the first AES calculation round
* -after the last AES calculation round
*
* Tradeoff: Uncommenting this increases ROM footprint by ~100 bytes.
* Tradeoff: Uncommenting this macro does not increases ROM footprint.
* The performance loss is ~50% with 128 bit AES.
*
* This option is dependent of \c MBEDTLS_ENTROPY_HARDWARE_ALT.

View File

@ -96,8 +96,6 @@ typedef struct {
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
/* Number of additional AES calculation rounds added for SCA CM */
#define AES_SCA_CM_ROUNDS 5
#else /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#define AES_SCA_CM_ROUNDS 0
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_PADLOCK_C) && \
@ -543,12 +541,10 @@ static void aes_gen_tables( void )
* | Fi | Ri | F | F | F | R | R | ... | R | R | R | R | F |
* |0x10|0x03 |0x10|0x10|0x10|0x04|0x00| ... |0x04|0x00|0x04|0x03|0x07|
*/
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
static int aes_sca_cm_data_randomize( uint8_t *tbl, uint8_t tbl_len )
{
int i = 0, j, is_even_pos, dummy_rounds;
#if AES_SCA_CM_ROUNDS != 0
int num;
int i = 0, j, is_even_pos, dummy_rounds, num;
mbedtls_platform_memset( tbl, 0, tbl_len );
// get random from 0xfff (each byte will be used separately)
@ -582,12 +578,6 @@ static int aes_sca_cm_data_randomize( uint8_t *tbl, uint8_t tbl_len )
{
tbl[j] = 0x10; // dummy data
}
#else /* AES_SCA_CM_ROUNDS != 0 */
mbedtls_platform_memset( tbl, 0, tbl_len );
dummy_rounds = 0;
j = 0;
tbl[i++] = 0x03; // real data + stop marker for the round key addition
#endif /* AES_SCA_CM_ROUNDS != 0 */
// Fill real AES data to the remaining places
is_even_pos = 1;
@ -614,6 +604,7 @@ static int aes_sca_cm_data_randomize( uint8_t *tbl, uint8_t tbl_len )
return( dummy_rounds );
}
#endif /*MBEDTLS_AES_SCA_COUNTERMEASURES */
#if defined(MBEDTLS_AES_FEWER_TABLES)
@ -1003,6 +994,7 @@ int mbedtls_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx,
*/
#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
static uint32_t *aes_fround( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
@ -1061,27 +1053,19 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
{
int i, tindex, offset, stop_mark, dummy_rounds;
aes_r_data_t aes_data_real; // real data
#if AES_SCA_CM_ROUNDS != 0
aes_r_data_t aes_data_fake; // fake data
#endif /* AES_SCA_CM_ROUNDS != 0 */
aes_r_data_t *aes_data_ptr; // pointer to real or fake data
aes_r_data_t *aes_data_table[2]; // pointers to real and fake data
int round_ctrl_table_len = ctx->nr + 1;
int round_ctrl_table_len = ctx->nr + 2 + AES_SCA_CM_ROUNDS;
volatile int flow_control;
// control bytes for AES calculation rounds,
// reserve based on max rounds + dummy rounds + 2 (for initial key addition)
uint8_t round_ctrl_table[( 14 + AES_SCA_CM_ROUNDS + 2 )];
aes_data_real.rk_ptr = ctx->rk;
aes_data_table[0] = &aes_data_real;
#if AES_SCA_CM_ROUNDS != 0
round_ctrl_table_len += ( AES_SCA_CM_ROUNDS + 1 );
aes_data_table[1] = &aes_data_fake;
aes_data_fake.rk_ptr = ctx->rk;
for( i = 0; i < 4; i++ )
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
#endif
aes_data_table[0] = &aes_data_real;
aes_data_table[1] = &aes_data_fake;
// Get AES calculation control bytes
dummy_rounds = aes_sca_cm_data_randomize( round_ctrl_table,
@ -1095,6 +1079,7 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
do
{
GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) );
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
flow_control++;
} while( ( i = ( i + 1 ) % 4 ) != offset );
@ -1171,6 +1156,87 @@ int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
#else /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
do \
{ \
(X0) = *RK++ ^ AES_FT0( ( (Y0) ) & 0xFF ) ^ \
AES_FT1( ( (Y1) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y2) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y3) >> 24 ) & 0xFF ); \
\
(X1) = *RK++ ^ AES_FT0( ( (Y1) ) & 0xFF ) ^ \
AES_FT1( ( (Y2) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y3) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y0) >> 24 ) & 0xFF ); \
\
(X2) = *RK++ ^ AES_FT0( ( (Y2) ) & 0xFF ) ^ \
AES_FT1( ( (Y3) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y0) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y1) >> 24 ) & 0xFF ); \
\
(X3) = *RK++ ^ AES_FT0( ( (Y3) ) & 0xFF ) ^ \
AES_FT1( ( (Y0) >> 8 ) & 0xFF ) ^ \
AES_FT2( ( (Y1) >> 16 ) & 0xFF ) ^ \
AES_FT3( ( (Y2) >> 24 ) & 0xFF ); \
} while( 0 )
int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->rk;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
{
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
}
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
X0 = *RK++ ^ \
( (uint32_t) FSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
X1 = *RK++ ^ \
( (uint32_t) FSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
X2 = *RK++ ^ \
( (uint32_t) FSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) FSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
return( 0 );
}
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#endif /* !MBEDTLS_AES_ENCRYPT_ALT */
#if !defined(MBEDTLS_DEPRECATED_REMOVED)
@ -1189,6 +1255,7 @@ void mbedtls_aes_encrypt( mbedtls_aes_context *ctx,
#if !defined(MBEDTLS_AES_DECRYPT_ALT)
#if !defined(MBEDTLS_AES_ONLY_ENCRYPT)
#if defined(MBEDTLS_AES_SCA_COUNTERMEASURES)
static uint32_t *aes_rround( uint32_t *R,
uint32_t *X0, uint32_t *X1, uint32_t *X2, uint32_t *X3,
uint32_t Y0, uint32_t Y1, uint32_t Y2, uint32_t Y3 )
@ -1246,27 +1313,19 @@ int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
{
int i, tindex, offset, stop_mark, dummy_rounds;
aes_r_data_t aes_data_real; // real data
#if AES_SCA_CM_ROUNDS != 0
aes_r_data_t aes_data_fake; // fake data
#endif /* AES_SCA_CM_ROUNDS != 0 */
aes_r_data_t *aes_data_ptr; // pointer to real or fake data
aes_r_data_t *aes_data_table[2]; // pointers to real and fake data
int round_ctrl_table_len = ctx->nr + 1;
int round_ctrl_table_len = ctx->nr + 2 + AES_SCA_CM_ROUNDS;
volatile int flow_control;
// control bytes for AES calculation rounds,
// reserve based on max rounds + dummy rounds + 2 (for initial key addition)
uint8_t round_ctrl_table[( 14 + AES_SCA_CM_ROUNDS + 2 )];
aes_data_real.rk_ptr = ctx->rk;
aes_data_table[0] = &aes_data_real;
#if AES_SCA_CM_ROUNDS != 0
round_ctrl_table_len += ( AES_SCA_CM_ROUNDS + 1 );
aes_data_table[1] = &aes_data_fake;
aes_data_fake.rk_ptr = ctx->rk;
for( i = 0; i < 4; i++ )
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
#endif
aes_data_table[0] = &aes_data_real;
aes_data_table[1] = &aes_data_fake;
// Get AES calculation control bytes
dummy_rounds = aes_sca_cm_data_randomize( round_ctrl_table,
@ -1280,6 +1339,7 @@ int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
do
{
GET_UINT32_LE( aes_data_real.xy_values[i], input, ( i * 4 ) );
aes_data_fake.xy_values[i] = mbedtls_platform_random_in_range( 0xffffffff );
flow_control++;
} while( ( i = ( i + 1 ) % 4 ) != offset );
@ -1356,6 +1416,88 @@ int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
#else /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
do \
{ \
(X0) = *RK++ ^ AES_RT0( ( (Y0) ) & 0xFF ) ^ \
AES_RT1( ( (Y3) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y2) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y1) >> 24 ) & 0xFF ); \
\
(X1) = *RK++ ^ AES_RT0( ( (Y1) ) & 0xFF ) ^ \
AES_RT1( ( (Y0) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y3) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y2) >> 24 ) & 0xFF ); \
\
(X2) = *RK++ ^ AES_RT0( ( (Y2) ) & 0xFF ) ^ \
AES_RT1( ( (Y1) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y0) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y3) >> 24 ) & 0xFF ); \
\
(X3) = *RK++ ^ AES_RT0( ( (Y3) ) & 0xFF ) ^ \
AES_RT1( ( (Y2) >> 8 ) & 0xFF ) ^ \
AES_RT2( ( (Y1) >> 16 ) & 0xFF ) ^ \
AES_RT3( ( (Y0) >> 24 ) & 0xFF ); \
} while( 0 )
int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->rk;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
{
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
}
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
X0 = *RK++ ^ \
( (uint32_t) RSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
X1 = *RK++ ^ \
( (uint32_t) RSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
X2 = *RK++ ^ \
( (uint32_t) RSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) RSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
return( 0 );
}
#endif /* MBEDTLS_AES_SCA_COUNTERMEASURES */
#endif /* !MBEDTLS_AES_ONLY_ENCRYPT */
#endif /* !MBEDTLS_AES_DECRYPT_ALT */