diff --git a/ChangeLog b/ChangeLog index 3f074699c..f25cd6074 100644 --- a/ChangeLog +++ b/ChangeLog @@ -3,6 +3,7 @@ PolarSSL ChangeLog (Sorted per branch, date) = PolarSSL 1.3 branch Features * PK tests added to test framework + * Added optional optimization for NIST MODP curves (POLARSSL_ECP_NIST_OPTIM) Bugfix * Server does not send out extensions not advertised by client diff --git a/include/polarssl/bignum.h b/include/polarssl/bignum.h index b1c43b75c..eae15e04d 100644 --- a/include/polarssl/bignum.h +++ b/include/polarssl/bignum.h @@ -128,6 +128,7 @@ typedef uint32_t t_udbl; #define POLARSSL_HAVE_UDBL #else #if ( defined(_MSC_VER) && defined(_M_AMD64) ) + #define POLARSSL_HAVE_INT64 typedef int64_t t_sint; typedef uint64_t t_uint; #else @@ -137,11 +138,13 @@ typedef uint32_t t_udbl; defined(__ia64__) || defined(__alpha__) || \ (defined(__sparc__) && defined(__arch64__)) || \ defined(__s390x__) ) ) + #define POLARSSL_HAVE_INT64 typedef int64_t t_sint; typedef uint64_t t_uint; typedef unsigned int t_udbl __attribute__((mode(TI))); #define POLARSSL_HAVE_UDBL #else + #define POLARSSL_HAVE_INT32 typedef int32_t t_sint; typedef uint32_t t_uint; #if ( defined(_MSC_VER) && defined(_M_IX86) ) diff --git a/include/polarssl/config.h b/include/polarssl/config.h index 540658394..31d6db70d 100644 --- a/include/polarssl/config.h +++ b/include/polarssl/config.h @@ -259,6 +259,17 @@ #define POLARSSL_ECP_DP_BP384R1_ENABLED #define POLARSSL_ECP_DP_BP512R1_ENABLED +/** + * \def POLARSSL_ECP_NIST_OPTIM + * + * Enable specific 'modulo p' routines for each NIST prime. + * Depending on the prime and architecture, makes operations 4 to 8 times + * faster on the corresponding curve. + * + * Comment this macro to disable NIST curves optimisation. + */ +#define POLARSSL_ECP_NIST_OPTIM + /** * \def POLARSSL_KEY_EXCHANGE_PSK_ENABLED * diff --git a/include/polarssl/ecp.h b/include/polarssl/ecp.h index 7940b3219..02f6f9349 100644 --- a/include/polarssl/ecp.h +++ b/include/polarssl/ecp.h @@ -186,6 +186,24 @@ ecp_keypair; */ const ecp_curve_info *ecp_curve_list( void ); +/** + * \brief Get curve information from an internal group identifier + * + * \param grp_id A POLARSSL_ECP_DP_XXX value + * + * \return The associated curve information or NULL + */ +const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ); + +/** + * \brief Get curve information from a TLS NamedCurve value + * + * \param grp_id A POLARSSL_ECP_DP_XXX value + * + * \return The associated curve information or NULL + */ +const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id ); + /** * \brief Initialize a point (as zero) */ @@ -216,25 +234,6 @@ void ecp_group_free( ecp_group *grp ); */ void ecp_keypair_free( ecp_keypair *key ); -/** - * \brief Set a point to zero - * - * \param pt Destination point - * - * \return 0 if successful, - * POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed - */ -int ecp_set_zero( ecp_point *pt ); - -/** - * \brief Tell if a point is zero - * - * \param pt Point to test - * - * \return 1 if point is zero, 0 otherwise - */ -int ecp_is_zero( ecp_point *pt ); - /** * \brief Copy the contents of point Q into P * @@ -257,6 +256,25 @@ int ecp_copy( ecp_point *P, const ecp_point *Q ); */ int ecp_group_copy( ecp_group *dst, const ecp_group *src ); +/** + * \brief Set a point to zero + * + * \param pt Destination point + * + * \return 0 if successful, + * POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed + */ +int ecp_set_zero( ecp_point *pt ); + +/** + * \brief Tell if a point is zero + * + * \param pt Point to test + * + * \return 1 if point is zero, 0 otherwise + */ +int ecp_is_zero( ecp_point *pt ); + /** * \brief Import a non-zero point from two ASCII strings * @@ -270,25 +288,6 @@ int ecp_group_copy( ecp_group *dst, const ecp_group *src ); int ecp_point_read_string( ecp_point *P, int radix, const char *x, const char *y ); -/** - * \brief Import an ECP group from null-terminated ASCII strings - * - * \param grp Destination group - * \param radix Input numeric base - * \param p Prime modulus of the base field - * \param b Constant term in the equation - * \param gx The generator's X coordinate - * \param gy The generator's Y coordinate - * \param n The generator's order - * - * \return 0 if successful, or a POLARSSL_ERR_MPI_XXX error code - * - * \note Sets all fields except modp. - */ -int ecp_group_read_string( ecp_group *grp, int radix, - const char *p, const char *b, - const char *gx, const char *gy, const char *n); - /** * \brief Export a point into unsigned binary data * @@ -326,6 +325,58 @@ int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P, int ecp_point_read_binary( const ecp_group *grp, ecp_point *P, const unsigned char *buf, size_t ilen ); +/** + * \brief Import a point from a TLS ECPoint record + * + * \param grp ECP group used + * \param pt Destination point + * \param buf $(Start of input buffer) + * \param len Buffer length + * + * \return O if successful, + * POLARSSL_ERR_MPI_XXX if initialization failed + * POLARSSL_ERR_ECP_BAD_INPUT_DATA if input is invalid + */ +int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt, + const unsigned char **buf, size_t len ); + +/** + * \brief Export a point as a TLS ECPoint record + * + * \param grp ECP group used + * \param pt Point to export + * \param format Export format + * \param olen length of data written + * \param buf Buffer to write to + * \param blen Buffer length + * + * \return 0 if successful, + * or POLARSSL_ERR_ECP_BAD_INPUT_DATA + * or POLARSSL_ERR_ECP_BUFFER_TOO_SMALL + */ +int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt, + int format, size_t *olen, + unsigned char *buf, size_t blen ); + +/** + * \brief Import an ECP group from null-terminated ASCII strings + * + * \param grp Destination group + * \param radix Input numeric base + * \param p Prime modulus of the base field + * \param b Constant term in the equation + * \param gx The generator's X coordinate + * \param gy The generator's Y coordinate + * \param n The generator's order + * + * \return 0 if successful, or a POLARSSL_ERR_MPI_XXX error code + * + * \note Sets all fields except modp. + */ +int ecp_group_read_string( ecp_group *grp, int radix, + const char *p, const char *b, + const char *gx, const char *gy, const char *n); + /** * \brief Set a group using well-known domain parameters * @@ -368,57 +419,6 @@ int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len ); int ecp_tls_write_group( const ecp_group *grp, size_t *olen, unsigned char *buf, size_t blen ); -/** - * \brief Get curve information from an internal group identifier - * - * \param grp_id A POLARSSL_ECP_DP_XXX value - * - * \return The associated curve information or NULL - */ -const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ); - -/** - * \brief Get curve information from a TLS NamedCurve value - * - * \param grp_id A POLARSSL_ECP_DP_XXX value - * - * \return The associated curve information or NULL - */ -const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id ); - -/** - * \brief Import a point from a TLS ECPoint record - * - * \param grp ECP group used - * \param pt Destination point - * \param buf $(Start of input buffer) - * \param len Buffer length - * - * \return O if successful, - * POLARSSL_ERR_MPI_XXX if initialization failed - * POLARSSL_ERR_ECP_BAD_INPUT_DATA if input is invalid - */ -int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt, - const unsigned char **buf, size_t len ); - -/** - * \brief Export a point as a TLS ECPoint record - * - * \param grp ECP group used - * \param pt Point to export - * \param format Export format - * \param olen length of data written - * \param buf Buffer to write to - * \param blen Buffer length - * - * \return 0 if successful, - * or POLARSSL_ERR_ECP_BAD_INPUT_DATA - * or POLARSSL_ERR_ECP_BUFFER_TOO_SMALL - */ -int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt, - int format, size_t *olen, - unsigned char *buf, size_t blen ); - /** * \brief Addition: R = P + Q * diff --git a/library/ecp.c b/library/ecp.c index d3880be55..bedb67506 100644 --- a/library/ecp.c +++ b/library/ecp.c @@ -111,6 +111,42 @@ const ecp_curve_info *ecp_curve_list( void ) return ecp_supported_curves; } +/* + * Get the curve info for the internal identifer + */ +const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ) +{ + const ecp_curve_info *curve_info; + + for( curve_info = ecp_curve_list(); + curve_info->grp_id != POLARSSL_ECP_DP_NONE; + curve_info++ ) + { + if( curve_info->grp_id == grp_id ) + return( curve_info ); + } + + return( NULL ); +} + +/* + * Get the curve info from the TLS identifier + */ +const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id ) +{ + const ecp_curve_info *curve_info; + + for( curve_info = ecp_curve_list(); + curve_info->grp_id != POLARSSL_ECP_DP_NONE; + curve_info++ ) + { + if( curve_info->tls_id == tls_id ) + return( curve_info ); + } + + return( NULL ); +} + /* * Initialize (the components of) a point */ @@ -200,6 +236,29 @@ void ecp_keypair_free( ecp_keypair *key ) ecp_point_free( &key->Q ); } +/* + * Copy the contents of a point + */ +int ecp_copy( ecp_point *P, const ecp_point *Q ) +{ + int ret; + + MPI_CHK( mpi_copy( &P->X, &Q->X ) ); + MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); + MPI_CHK( mpi_copy( &P->Z, &Q->Z ) ); + +cleanup: + return( ret ); +} + +/* + * Copy the contents of a group object + */ +int ecp_group_copy( ecp_group *dst, const ecp_group *src ) +{ + return ecp_use_known_dp( dst, src->id ); +} + /* * Set point to zero */ @@ -223,29 +282,6 @@ int ecp_is_zero( ecp_point *pt ) return( mpi_cmp_int( &pt->Z, 0 ) == 0 ); } -/* - * Copy the contents of Q into P - */ -int ecp_copy( ecp_point *P, const ecp_point *Q ) -{ - int ret; - - MPI_CHK( mpi_copy( &P->X, &Q->X ) ); - MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); - MPI_CHK( mpi_copy( &P->Z, &Q->Z ) ); - -cleanup: - return( ret ); -} - -/* - * Copy the contents of a group object - */ -int ecp_group_copy( ecp_group *dst, const ecp_group *src ) -{ - return ecp_use_known_dp( dst, src->id ); -} - /* * Import a non-zero point from ASCII strings */ @@ -262,50 +298,6 @@ cleanup: return( ret ); } -/* - * Import an ECP group from ASCII strings, general case (A used) - */ -static int ecp_group_read_string_gen( ecp_group *grp, int radix, - const char *p, const char *a, const char *b, - const char *gx, const char *gy, const char *n) -{ - int ret; - - MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); - MPI_CHK( mpi_read_string( &grp->A, radix, a ) ); - MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); - MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); - MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); - - grp->pbits = mpi_msb( &grp->P ); - grp->nbits = mpi_msb( &grp->N ); - -cleanup: - if( ret != 0 ) - ecp_group_free( grp ); - - return( ret ); -} - -/* - * Import an ECP group from ASCII strings, case A == -3 - */ -int ecp_group_read_string( ecp_group *grp, int radix, - const char *p, const char *b, - const char *gx, const char *gy, const char *n) -{ - int ret; - - MPI_CHK( ecp_group_read_string_gen( grp, radix, p, "00", b, gx, gy, n ) ); - MPI_CHK( mpi_add_int( &grp->A, &grp->P, -3 ) ); - -cleanup: - if( ret != 0 ) - ecp_group_free( grp ); - - return( ret ); -} - /* * Export a point into unsigned binary data (SEC1 2.3.3) */ @@ -449,150 +441,48 @@ int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt, } /* - * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi. - * See the documentation of struct ecp_group. + * Import an ECP group from ASCII strings, general case (A used) */ -static int ecp_modp( mpi *N, const ecp_group *grp ) +static int ecp_group_read_string_gen( ecp_group *grp, int radix, + const char *p, const char *a, const char *b, + const char *gx, const char *gy, const char *n) { int ret; - if( grp->modp == NULL ) - return( mpi_mod_mpi( N, N, &grp->P ) ); + MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); + MPI_CHK( mpi_read_string( &grp->A, radix, a ) ); + MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); + MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); + MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); - if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits ) - return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); - - MPI_CHK( grp->modp( N ) ); - - while( mpi_cmp_int( N, 0 ) < 0 ) - MPI_CHK( mpi_add_mpi( N, N, &grp->P ) ); - - while( mpi_cmp_mpi( N, &grp->P ) >= 0 ) - MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) ); + grp->pbits = mpi_msb( &grp->P ); + grp->nbits = mpi_msb( &grp->N ); cleanup: + if( ret != 0 ) + ecp_group_free( grp ); + return( ret ); } -#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) /* - * 192 bits in terms of t_uint + * Import an ECP group from ASCII strings, case A == -3 */ -#define P192_SIZE_INT ( 192 / CHAR_BIT / sizeof( t_uint ) ) - -/* - * Table to get S1, S2, S3 of FIPS 186-3 D.2.1: - * -1 means let this chunk be 0 - * a positive value i means A_i. - */ -#define P192_CHUNKS 3 -#define P192_CHUNK_CHAR ( 64 / CHAR_BIT ) -#define P192_CHUNK_INT ( P192_CHUNK_CHAR / sizeof( t_uint ) ) - -const signed char p192_tbl[][P192_CHUNKS] = { - { -1, 3, 3 }, /* S1 */ - { 4, 4, -1 }, /* S2 */ - { 5, 5, 5 }, /* S3 */ -}; - -/* - * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) - */ -static int ecp_mod_p192( mpi *N ) +int ecp_group_read_string( ecp_group *grp, int radix, + const char *p, const char *b, + const char *gx, const char *gy, const char *n) { int ret; - unsigned char i, j, offset; - signed char chunk; - mpi tmp, acc; - t_uint tmp_p[P192_SIZE_INT], acc_p[P192_SIZE_INT + 1]; - tmp.s = 1; - tmp.n = sizeof( tmp_p ) / sizeof( tmp_p[0] ); - tmp.p = tmp_p; - - acc.s = 1; - acc.n = sizeof( acc_p ) / sizeof( acc_p[0] ); - acc.p = acc_p; - - MPI_CHK( mpi_grow( N, P192_SIZE_INT * 2 ) ); - - /* - * acc = T - */ - memset( acc_p, 0, sizeof( acc_p ) ); - memcpy( acc_p, N->p, P192_CHUNK_CHAR * P192_CHUNKS ); - - for( i = 0; i < sizeof( p192_tbl ) / sizeof( p192_tbl[0] ); i++) - { - /* - * tmp = S_i - */ - memset( tmp_p, 0, sizeof( tmp_p ) ); - for( j = 0, offset = P192_CHUNKS - 1; j < P192_CHUNKS; j++, offset-- ) - { - chunk = p192_tbl[i][j]; - if( chunk >= 0 ) - memcpy( tmp_p + offset * P192_CHUNK_INT, - N->p + chunk * P192_CHUNK_INT, - P192_CHUNK_CHAR ); - } - - /* - * acc += tmp - */ - MPI_CHK( mpi_add_abs( &acc, &acc, &tmp ) ); - } - - MPI_CHK( mpi_copy( N, &acc ) ); + MPI_CHK( ecp_group_read_string_gen( grp, radix, p, "00", b, gx, gy, n ) ); + MPI_CHK( mpi_add_int( &grp->A, &grp->P, -3 ) ); cleanup: + if( ret != 0 ) + ecp_group_free( grp ); + return( ret ); } -#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */ - -#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) -/* - * Size of p521 in terms of t_uint - */ -#define P521_SIZE_INT ( 521 / CHAR_BIT / sizeof( t_uint ) + 1 ) - -/* - * Bits to keep in the most significant t_uint - */ -#if defined(POLARSS_HAVE_INT8) -#define P521_MASK 0x01 -#else -#define P521_MASK 0x01FF -#endif - -/* - * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) - */ -static int ecp_mod_p521( mpi *N ) -{ - int ret; - t_uint Mp[P521_SIZE_INT]; - mpi M; - - if( N->n < P521_SIZE_INT ) - return( 0 ); - - memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) ); - memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) ); - Mp[P521_SIZE_INT - 1] &= P521_MASK; - - M.s = 1; - M.n = P521_SIZE_INT; - M.p = Mp; - - MPI_CHK( mpi_shift_r( N, 521 ) ); - - MPI_CHK( mpi_add_abs( N, N, &M ) ); - -cleanup: - return( ret ); -} -#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */ /* * Domain parameters for secp192r1 @@ -739,6 +629,15 @@ cleanup: "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \ "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069" +#if defined(POLARSSL_ECP_NIST_OPTIM) +/* Forward declarations */ +static int ecp_mod_p192( mpi * ); +static int ecp_mod_p224( mpi * ); +static int ecp_mod_p256( mpi * ); +static int ecp_mod_p384( mpi * ); +static int ecp_mod_p521( mpi * ); +#endif + /* * Set a group using well-known domain parameters */ @@ -750,7 +649,9 @@ int ecp_use_known_dp( ecp_group *grp, ecp_group_id id ) { #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) case POLARSSL_ECP_DP_SECP192R1: +#if defined(POLARSSL_ECP_NIST_OPTIM) grp->modp = ecp_mod_p192; +#endif return( ecp_group_read_string( grp, 16, SECP192R1_P, SECP192R1_B, SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) ); @@ -758,6 +659,9 @@ int ecp_use_known_dp( ecp_group *grp, ecp_group_id id ) #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) case POLARSSL_ECP_DP_SECP224R1: +#if defined(POLARSSL_ECP_NIST_OPTIM) + grp->modp = ecp_mod_p224; +#endif return( ecp_group_read_string( grp, 16, SECP224R1_P, SECP224R1_B, SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) ); @@ -765,6 +669,9 @@ int ecp_use_known_dp( ecp_group *grp, ecp_group_id id ) #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) case POLARSSL_ECP_DP_SECP256R1: +#if defined(POLARSSL_ECP_NIST_OPTIM) + grp->modp = ecp_mod_p256; +#endif return( ecp_group_read_string( grp, 16, SECP256R1_P, SECP256R1_B, SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) ); @@ -772,6 +679,9 @@ int ecp_use_known_dp( ecp_group *grp, ecp_group_id id ) #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) case POLARSSL_ECP_DP_SECP384R1: +#if defined(POLARSSL_ECP_NIST_OPTIM) + grp->modp = ecp_mod_p384; +#endif return( ecp_group_read_string( grp, 16, SECP384R1_P, SECP384R1_B, SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) ); @@ -779,7 +689,9 @@ int ecp_use_known_dp( ecp_group *grp, ecp_group_id id ) #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) case POLARSSL_ECP_DP_SECP521R1: +#if defined(POLARSSL_ECP_NIST_OPTIM) grp->modp = ecp_mod_p521; +#endif return( ecp_group_read_string( grp, 16, SECP521R1_P, SECP521R1_B, SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) ); @@ -878,39 +790,37 @@ int ecp_tls_write_group( const ecp_group *grp, size_t *olen, } /* - * Get the curve info from the TLS identifier + * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi. + * See the documentation of struct ecp_group. + * + * This function is in the critial loop for ecp_mul, so pay attention to perf. */ -const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id ) +static int ecp_modp( mpi *N, const ecp_group *grp ) { - const ecp_curve_info *curve_info; + int ret; - for( curve_info = ecp_curve_list(); - curve_info->grp_id != POLARSSL_ECP_DP_NONE; - curve_info++ ) + if( grp->modp == NULL ) + return( mpi_mod_mpi( N, N, &grp->P ) ); + + /* N->s < 0 is a much faster test, which fails only if N is 0 */ + if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) || + mpi_msb( N ) > 2 * grp->pbits ) { - if( curve_info->tls_id == tls_id ) - return( curve_info ); + return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); } - return( NULL ); -} + MPI_CHK( grp->modp( N ) ); -/* - * Get the curve info for the internal identifer - */ -const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ) -{ - const ecp_curve_info *curve_info; + /* N->s < 0 is a much faster test, which fails only if N is 0 */ + while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) + MPI_CHK( mpi_add_mpi( N, N, &grp->P ) ); - for( curve_info = ecp_curve_list(); - curve_info->grp_id != POLARSSL_ECP_DP_NONE; - curve_info++ ) - { - if( curve_info->grp_id == grp_id ) - return( curve_info ); - } + while( mpi_cmp_mpi( N, &grp->P ) >= 0 ) + /* we known P, N and the result are positive */ + MPI_CHK( mpi_sub_abs( N, N, &grp->P ) ); - return( NULL ); +cleanup: + return( ret ); } /* @@ -930,17 +840,20 @@ const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id ) /* * Reduce a mpi mod p in-place, to use after mpi_sub_mpi + * N->s < 0 is a very fast test, which fails only if N is 0 */ #define MOD_SUB( N ) \ - while( mpi_cmp_int( &N, 0 ) < 0 ) \ + while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 ) \ MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) ) /* - * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int + * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int. + * We known P, N and the result are positive, so sub_abs is correct, and + * a bit faster. */ #define MOD_ADD( N ) \ while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \ - MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) ) + MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) ) /* * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) @@ -1117,7 +1030,7 @@ cleanup: } /* - * Addition or subtraction: R = P + Q or R = P + Q, + * Addition or subtraction: R = P + Q or R = P - Q, * mixed affine-Jacobian coordinates (GECC 3.22) * * The coordinates of Q must be normalized (= affine), @@ -1667,6 +1580,409 @@ int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q, return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) ); } +#if defined(POLARSSL_ECP_NIST_OPTIM) +/* + * Fast reduction modulo the primes used by the NIST curves. + * + * These functions are: critical for speed, but not need for correct + * operations. So, we make the choice to heavily rely on the internals of our + * bignum library, which creates a tight coupling between these functions and + * our MPI implementation. However, the coupling between the ECP module and + * MPI remains loose, since these functions can be deactivated at will. + */ + +#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) +/* + * Compared to the way things are presented in FIPS 186-3 D.2, + * we proceed in columns, from right (least significant chunk) to left, + * adding chunks to N in place, and keeping a carry for the next chunk. + * This avoids moving things around in memory, and uselessly adding zeros, + * compared to the more straightforward, line-oriented approach. + * + * For this prime we need to handle data in chunks of 64 bits. + * Since this is always a multiple of our basic t_uint, we can + * use a t_uint * to designate such a chunk, and small loops to handle it. + */ + +/* Add 64-bit chunks (dst += src) and update carry */ +static inline void add64( t_uint *dst, t_uint *src, t_uint *carry ) +{ + unsigned char i; + t_uint c = 0; + for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ ) + { + *dst += c; c = ( *dst < c ); + *dst += *src; c += ( *dst < *src ); + } + *carry += c; +} + +/* Add carry to a 64-bit chunk and update carry */ +static inline void carry64( t_uint *dst, t_uint *carry ) +{ + unsigned char i; + for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ ) + { + *dst += *carry; + *carry = ( *dst < *carry ); + } +} + +#define WIDTH 8 / sizeof( t_uint ) +#define A( i ) N->p + i * WIDTH +#define ADD( i ) add64( p, A( i ), &c ) +#define NEXT p += WIDTH; carry64( p, &c ) +#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0 + +/* + * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) + */ +static int ecp_mod_p192( mpi *N ) +{ + int ret; + t_uint c = 0; + t_uint *p, *end; + + /* Make sure we have enough blocks so that A(5) is legal */ + MPI_CHK( mpi_grow( N, 6 * WIDTH ) ); + + p = N->p; + end = p + N->n; + + ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5 + ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5 + ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5 + +cleanup: + return( ret ); +} + +#undef WIDTH +#undef A +#undef ADD +#undef NEXT +#undef LAST +#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */ + +#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \ + defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \ + defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) +/* + * The reader is advised to first understand ecp_mod_p192() since the same + * general structure is used here, but with additional complications: + * (1) chunks of 32 bits, and (2) subtractions. + */ + +/* + * For these primes, we need to handle data in chunks of 32 bits. + * This makes it more complicated if we use 64 bits limbs in MPI, + * which prevents us from using a uniform access method as for p192. + * + * So, we define a mini abstraction layer to access 32 bit chunks, + * load them in 'cur' for work, and store them back from 'cur' when done. + * + * While at it, also define the size of N in terms of 32-bit chunks. + */ +#define LOAD32 cur = A( i ); + +#if defined(POLARSSL_HAVE_INT8) /* 8 bit */ + +#define MAX32 N->n / 4 +#define A( j ) (uint32_t)( N->p[4*j+0] ) | \ + ( N->p[4*j+1] << 8 ) | \ + ( N->p[4*j+2] << 16 ) | \ + ( N->p[4*j+3] << 24 ) +#define STORE32 N->p[4*i+0] = (uint8_t)( cur ); \ + N->p[4*i+1] = (uint8_t)( cur >> 8 ); \ + N->p[4*i+2] = (uint8_t)( cur >> 16 ); \ + N->p[4*i+3] = (uint8_t)( cur >> 24 ); + +#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */ + +#define MAX32 N->n / 2 +#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 ) +#define STORE32 N->p[2*i+0] = (uint16_t)( cur ); \ + N->p[2*i+1] = (uint16_t)( cur >> 16 ); + +#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */ + +#define MAX32 N->n +#define A( j ) N->p[j] +#define STORE32 N->p[i] = cur; + +#else /* 64-bit */ + +#define MAX32 N->n * 2 +#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] ) +#define STORE32 \ + if( i % 2 ) { \ + N->p[i/2] &= 0x00000000FFFFFFFF; \ + N->p[i/2] |= ((uint64_t) cur) << 32; \ + } else { \ + N->p[i/2] &= 0xFFFFFFFF00000000; \ + N->p[i/2] |= (uint64_t) cur; \ + } + +#endif /* sizeof( t_uint ) */ + +/* + * Helpers for addition and subtraction of chunks, with signed carry. + */ +static inline void add32( uint32_t *dst, uint32_t src, signed char *carry ) +{ + *dst += src; + *carry += ( *dst < src ); +} + +static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry ) +{ + *carry -= ( *dst < src ); + *dst -= src; +} + +#define ADD( j ) add32( &cur, A( j ), &c ); +#define SUB( j ) sub32( &cur, A( j ), &c ); + +/* + * Helpers for the main 'loop' + * (see fix_negative for the motivation of C) + */ +#define INIT( b ) \ + int ret; \ + signed char c = 0, cc; \ + uint32_t cur; \ + size_t i = 0, bits = b; \ + mpi C; \ + t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \ + \ + C.s = 1; \ + C.n = b / 8 / sizeof( t_uint) + 1; \ + C.p = Cp; \ + memset( Cp, 0, C.n * sizeof( t_uint ) ); \ + \ + MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \ + LOAD32; + +#define NEXT \ + STORE32; i++; LOAD32; \ + cc = c; c = 0; \ + if( cc < 0 ) \ + sub32( &cur, -cc, &c ); \ + else \ + add32( &cur, cc, &c ); \ + +#define LAST \ + STORE32; i++; \ + cur = c > 0 ? c : 0; STORE32; \ + cur = 0; while( ++i < MAX32 ) { STORE32; } \ + if( c < 0 ) fix_negative( N, c, &C, bits ); + +/* + * If the result is negative, we get it in the form + * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits' + */ +static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits ) +{ + int ret; + + /* C = - c * 2^(bits + 32) */ +#if !defined(POLARSSL_HAVE_INT64) + ((void) bits); +#else + if( bits == 224 ) + C->p[ C->n - 1 ] = ((t_uint) -c) << 32; + else +#endif + C->p[ C->n - 1 ] = (t_uint) -c; + + /* N = - ( C - N ) */ + MPI_CHK( mpi_sub_abs( N, C, N ) ); + N->s = -1; + +cleanup: + + return( ret ); +} + +#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) +/* + * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2) + */ +static int ecp_mod_p224( mpi *N ) +{ + INIT( 224 ); + + SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11 + SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12 + SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13 + SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11 + SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12 + SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13 + SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10 + +cleanup: + return( ret ); +} +#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */ + +#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) +/* + * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3) + */ +static int ecp_mod_p256( mpi *N ) +{ + INIT( 256 ); + + ADD( 8 ); ADD( 9 ); + SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0 + + ADD( 9 ); ADD( 10 ); + SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1 + + ADD( 10 ); ADD( 11 ); + SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2 + + ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 ); + SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3 + + ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 ); + SUB( 9 ); SUB( 10 ); NEXT; // A4 + + ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 ); + SUB( 10 ); SUB( 11 ); NEXT; // A5 + + ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 ); + SUB( 8 ); SUB( 9 ); NEXT; // A6 + + ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 ); + SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7 + +cleanup: + return( ret ); +} +#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */ + +#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) +/* + * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4) + */ +static int ecp_mod_p384( mpi *N ) +{ + INIT( 384 ); + + ADD( 12 ); ADD( 21 ); ADD( 20 ); + SUB( 23 ); NEXT; // A0 + + ADD( 13 ); ADD( 22 ); ADD( 23 ); + SUB( 12 ); SUB( 20 ); NEXT; // A2 + + ADD( 14 ); ADD( 23 ); + SUB( 13 ); SUB( 21 ); NEXT; // A2 + + ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 ); + SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3 + + ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 ); + SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4 + + ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 ); + SUB( 16 ); NEXT; // A5 + + ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 ); + SUB( 17 ); NEXT; // A6 + + ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 ); + SUB( 18 ); NEXT; // A7 + + ADD( 20 ); ADD( 17 ); ADD( 16 ); + SUB( 19 ); NEXT; // A8 + + ADD( 21 ); ADD( 18 ); ADD( 17 ); + SUB( 20 ); NEXT; // A9 + + ADD( 22 ); ADD( 19 ); ADD( 18 ); + SUB( 21 ); NEXT; // A10 + + ADD( 23 ); ADD( 20 ); ADD( 19 ); + SUB( 22 ); LAST; // A11 + +cleanup: + return( ret ); +} +#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */ + +#undef A +#undef LOAD32 +#undef STORE32 +#undef MAX32 +#undef INIT +#undef NEXT +#undef LAST + +#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED || + POLARSSL_ECP_DP_SECP256R1_ENABLED || + POLARSSL_ECP_DP_SECP384R1_ENABLED */ + +#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) +/* + * Here we have an actual Mersenne prime, so things are more straightforward. + * However, chunks are aligned on a 'weird' boundary (521 bits). + */ + +/* Size of p521 in terms of t_uint */ +#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 ) + +/* Bits to keep in the most significant t_uint */ +#if defined(POLARSSL_HAVE_INT8) +#define P521_MASK 0x01 +#else +#define P521_MASK 0x01FF +#endif + +/* + * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) + * Write N as A1 + 2^521 A0, return A0 + A1 + */ +static int ecp_mod_p521( mpi *N ) +{ + int ret; + size_t i; + mpi M; + t_uint Mp[P521_WIDTH + 1]; + /* Worst case for the size of M is when t_uint is 16 bits: + * we need to hold bits 513 to 1056, which is 34 limbs, that is + * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */ + + if( N->n < P521_WIDTH ) + return( 0 ); + + /* M = A1 */ + M.s = 1; + M.n = N->n - ( P521_WIDTH - 1 ); + if( M.n > P521_WIDTH + 1 ) + M.n = P521_WIDTH + 1; + M.p = Mp; + memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) ); + MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) ); + + /* N = A0 */ + N->p[P521_WIDTH - 1] &= P521_MASK; + for( i = P521_WIDTH; i < N->n; i++ ) + N->p[i] = 0; + + /* N = A0 + A1 */ + MPI_CHK( mpi_add_abs( N, N, &M ) ); + +cleanup: + return( ret ); +} + +#undef P521_WIDTH +#undef P521_MASK +#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */ + +#endif /* POLARSSL_ECP_NIST_OPTIM */ + #if defined(POLARSSL_SELF_TEST) /* diff --git a/tests/suites/test_suite_ecp.data b/tests/suites/test_suite_ecp.data index 9eb302b5b..2f5f4efc7 100644 --- a/tests/suites/test_suite_ecp.data +++ b/tests/suites/test_suite_ecp.data @@ -253,14 +253,58 @@ ECP gen keypair depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED ecp_gen_keypair:POLARSSL_ECP_DP_SECP192R1 +ECP mod p192 small (more than 192 bits, less limbs than 2 * 192 bits) +depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"0100000000000103010000000000010201000000000001010100000000000100" + ECP mod p192 readable depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED -ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"000000000000010500000000000001040000000000000103000000000000010200000000000001010000000000000100" +ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"010000000000010501000000000001040100000000000103010000000000010201000000000001010100000000000100" + +ECP mod p192 readable with carry +depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"FF00000000010500FF00000000010400FF00000000010300FF00000000010200FF00000000010100FF00000000010000" ECP mod p192 random depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"36CF96B45D706A0954D89E52CE5F38517A2270E0175849B6F3740151D238CCABEF921437E475881D83BB69E4AA258EBD" +ECP mod p192 (from a past failure case) +depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP192R1:"1AC2D6F96A2A425E9DD1776DD8368D4BBC86BF4964E79FEA713583BF948BBEFF0939F96FB19EC48C585BDA6A2D35C750" + +ECP mod p224 readable without carry +depends_on:POLARSSL_ECP_DP_SECP224R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP224R1:"0000000D0000000C0000000B0000000A0000000900000008000000070000FF060000FF050000FF040000FF03000FF0020000FF010000FF00" + +ECP mod p224 readable with negative carry +depends_on:POLARSSL_ECP_DP_SECP224R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP224R1:"0000000D0000000C0000000B0000000A00000009000000080000000700000006000000050000000400000003000000020000000100000000" + +ECP mod p224 readable with positive carry +depends_on:POLARSSL_ECP_DP_SECP224R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP224R1:"0000000D0000000C0000000BFFFFFF0AFFFFFF09FFFFFF08FFFFFF070000FF060000FF050000FF040000FF03000FF0020000FF010000FF00" + +ECP mod p224 readable with final negative carry +depends_on:POLARSSL_ECP_DP_SECP224R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP224R1:"FF00000D0000000C0000000B0000000A00000009000000080000000700000006000000050000000400000003000000020000000100000000" + +ECP mod p521 very small +depends_on:POLARSSL_ECP_DP_SECP521R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP521R1:"01" + +ECP mod p521 small (522 bits) +depends_on:POLARSSL_ECP_DP_SECP521R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP521R1:"030000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" + +ECP mod p521 readable +depends_on:POLARSSL_ECP_DP_SECP521R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP521R1:"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" + +ECP mod p521 readable with carry +depends_on:POLARSSL_ECP_DP_SECP521R1_ENABLED +ecp_fast_mod:POLARSSL_ECP_DP_SECP521R1:"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001" + ECP test vectors secp192r1 rfc 5114 depends_on:POLARSSL_ECP_DP_SECP192R1_ENABLED ecp_test_vect:POLARSSL_ECP_DP_SECP192R1:"323FA3169D8E9C6593F59476BC142000AB5BE0E249C43426":"CD46489ECFD6C105E7B3D32566E2B122E249ABAADD870612":"68887B4877DF51DD4DC3D6FD11F0A26F8FD3844317916E9A":"631F95BB4A67632C9C476EEE9AB695AB240A0499307FCF62":"519A121680E0045466BA21DF2EEE47F5973B500577EF13D5":"FF613AB4D64CEE3A20875BDB10F953F6B30CA072C60AA57F":"AD420182633F8526BFE954ACDA376F05E5FF4F837F54FEBE":"4371545ED772A59741D0EDA32C671112B7FDDD51461FCF32" diff --git a/tests/suites/test_suite_ecp.function b/tests/suites/test_suite_ecp.function index 6981f47d3..4eb52596c 100644 --- a/tests/suites/test_suite_ecp.function +++ b/tests/suites/test_suite_ecp.function @@ -229,8 +229,9 @@ void ecp_fast_mod( int id, char *N_str ) mpi_init( &N ); mpi_init( &R ); ecp_group_init( &grp ); - TEST_ASSERT( ecp_use_known_dp( &grp, id ) == 0 ); TEST_ASSERT( mpi_read_string( &N, 16, N_str ) == 0 ); + TEST_ASSERT( ecp_use_known_dp( &grp, id ) == 0 ); + TEST_ASSERT( grp.modp != NULL ); /* * Store correct result before we touch N