diff --git a/library/bignum.c b/library/bignum.c index 47bf1ef97..f58af788f 100644 --- a/library/bignum.c +++ b/library/bignum.c @@ -2194,12 +2194,23 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X, /* * Prime number generation + * + * If dh_flag is 0 and nbits is at least 1024, then the procedure + * follows the RSA probably-prime generation method of FIPS 186-4. + * NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536. */ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { - int ret; +#ifdef MBEDTLS_HAVE_INT64 +// ceil(2^63.5) +#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL +#else +// ceil(2^31.5) +#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U +#endif + int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; size_t k, n; mbedtls_mpi_uint r; mbedtls_mpi Y; @@ -2211,69 +2222,66 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag, n = BITS_TO_LIMBS( nbits ); - MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) ); - - k = mbedtls_mpi_bitlen( X ); - if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) ); - - mbedtls_mpi_set_bit( X, nbits-1, 1 ); - - X->p[0] |= 1; - - if( dh_flag == 0 ) + while( 1 ) { - while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) ); + /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ + if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue; + + k = n * biL; + if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) ); + X->p[0] |= 1; + + if( dh_flag == 0 ) { + ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ); + if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) goto cleanup; - - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) ); } - } - else - { - /* - * An necessary condition for Y and X = 2Y + 1 to be prime - * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). - * Make sure it is satisfied, while keeping X = 3 mod 4 - */ - - X->p[0] |= 2; - - MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) ); - if( r == 0 ) - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) ); - else if( r == 1 ) - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) ); - - /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ - MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) ); - - while( 1 ) + else { /* - * First, check small factors for X and Y - * before doing Miller-Rabin on any of them + * An necessary condition for Y and X = 2Y + 1 to be prime + * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). + * Make sure it is satisfied, while keeping X = 3 mod 4 */ - if( ( ret = mpi_check_small_factors( X ) ) == 0 && - ( ret = mpi_check_small_factors( &Y ) ) == 0 && - ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 && - ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 ) + + X->p[0] |= 2; + + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) ); + if( r == 0 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) ); + else if( r == 1 ) + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) ); + + /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ + MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) ); + + while( 1 ) { - break; + /* + * First, check small factors for X and Y + * before doing Miller-Rabin on any of them + */ + if( ( ret = mpi_check_small_factors( X ) ) == 0 && + ( ret = mpi_check_small_factors( &Y ) ) == 0 && + ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 && + ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 ) + goto cleanup; + + if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) + goto cleanup; + + /* + * Next candidates. We want to preserve Y = (X-1) / 2 and + * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) + * so up Y by 6 and X by 12. + */ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) ); } - - if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) - goto cleanup; - - /* - * Next candidates. We want to preserve Y = (X-1) / 2 and - * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) - * so up Y by 6 and X by 12. - */ - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) ); - MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) ); } } diff --git a/tests/suites/test_suite_mpi.data b/tests/suites/test_suite_mpi.data index 17cf350e4..2a2cfce45 100644 --- a/tests/suites/test_suite_mpi.data +++ b/tests/suites/test_suite_mpi.data @@ -688,6 +688,18 @@ Test mbedtls_mpi_gen_prime (OK, minimum size) depends_on:MBEDTLS_GENPRIME mbedtls_mpi_gen_prime:3:0:0 +Test mbedtls_mpi_gen_prime (corner case limb size -1 bits) +depends_on:MBEDTLS_GENPRIME +mbedtls_mpi_gen_prime:63:0:0 + +Test mbedtls_mpi_gen_prime (corner case limb size) +depends_on:MBEDTLS_GENPRIME +mbedtls_mpi_gen_prime:64:0:0 + +Test mbedtls_mpi_gen_prime (corner case limb size +1 bits) +depends_on:MBEDTLS_GENPRIME +mbedtls_mpi_gen_prime:65:0:0 + Test mbedtls_mpi_gen_prime (Larger) depends_on:MBEDTLS_GENPRIME mbedtls_mpi_gen_prime:128:0:0