CMAC support for cipher with 64bit blocks (DES/3DES)

This commit is contained in:
Brian Murray 2016-05-18 14:29:51 -07:00 committed by Simon Butcher
parent 8262ac3b54
commit b0c3c43dec
2 changed files with 442 additions and 87 deletions

View File

@ -37,8 +37,8 @@ extern "C" {
*/
typedef struct {
mbedtls_cipher_context_t cipher_ctx; /*!< cipher context used */
unsigned char K1[16];
unsigned char K2[16];
unsigned char* K1;
unsigned char* K2;
}
mbedtls_cmac_context;
@ -108,9 +108,8 @@ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx,
/**
* \brief AES-CMAC-128-PRF
* TODO: add reference to the standard
* See RFC
*
* \param ctx CMAC context
* \param key PRF key
* \param key_len PRF key length
* \param input buffer holding the input data
@ -120,8 +119,7 @@ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx,
*
* \return 0 if successful
*/
int mbedtls_aes_cmac_prf_128( mbedtls_cmac_context *ctx,
const unsigned char *key, size_t key_len,
int mbedtls_aes_cmac_prf_128( const unsigned char *key, size_t key_len,
const unsigned char *input, size_t in_len,
unsigned char *tag );

View File

@ -60,24 +60,39 @@ void mbedtls_cmac_init( mbedtls_cmac_context *ctx )
}
/*
* Multiply by u in GF(2^128)
* Multiplication by u in the Galois field of GF(2^n)
*
* As explained in the paper, this can be achieved as
* As explained in the paper, this can computed:
* If MSB(p) = 0, then p = (p << 1)
* If MSB(p) = 1, then p = (p << 1) ^ Rb
* with Rb = 0x87
* If MSB(p) = 1, then p = (p << 1) ^ R_n
* with R_64 = 0x1B and R_128 = 0x87
*
* Input and output MUST not point to the same buffer
* Block size must be 8 byes or 16 bytes.
*/
static void cmac_multiply_by_u( unsigned char *output,
const unsigned char *input )
static int cmac_multiply_by_u( unsigned char *output,
const unsigned char *input,
size_t blocksize)
{
const unsigned char Rb = 0x87; /* block size 16 only */
unsigned char mask;
unsigned char overflow = 0;
int i;
for( i = 15; i >= 0; i-- )
const unsigned char R_128 = 0x87;
const unsigned char R_64 = 0x1B;
unsigned char R_n, mask;
unsigned char overflow = 0x00;
int i, starting_index;
starting_index = blocksize -1;
if(blocksize == 16){
R_n = R_128;
} else if(blocksize == 8) {
R_n = R_64;
} else {
return MBEDTLS_ERR_CMAC_BAD_INPUT;
}
for( i = starting_index; i >= 0; i-- )
{
output[i] = input[i] << 1 | overflow;
overflow = input[i] >> 7;
@ -96,7 +111,8 @@ static void cmac_multiply_by_u( unsigned char *output,
#pragma warning( pop )
#endif
output[15] ^= Rb & mask;
output[starting_index] ^= R_n & mask;
return 0;
}
/*
@ -104,27 +120,35 @@ static void cmac_multiply_by_u( unsigned char *output,
*/
static int cmac_generate_subkeys( mbedtls_cmac_context *ctx )
{
int ret;
unsigned char L[16];
size_t olen;
int ret, keybytes;
unsigned char *L;
size_t olen, block_size;
ret = 0;
block_size = ctx->cipher_ctx.cipher_info->block_size;
L = mbedtls_calloc(block_size, sizeof(unsigned char));
/* Calculate Ek(0) */
memset( L, 0, 16 );
memset( L, 0, block_size );
if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx,
L, 16, L, &olen ) ) != 0 )
L, block_size, L, &olen ) ) != 0 )
{
return( ret );
goto exit;
}
/*
* Generate K1 and K2
*/
cmac_multiply_by_u( ctx->K1, L );
cmac_multiply_by_u( ctx->K2, ctx->K1 );
if( ( ret = cmac_multiply_by_u( ctx->K1, L , block_size) ) != 0 )
goto exit;
if( ( cmac_multiply_by_u( ctx->K2, ctx->K1 , block_size) ) != 0 )
goto exit;
mbedtls_zeroize( L, sizeof( L ) );
return( 0 );
exit:
mbedtls_zeroize( L, sizeof( L ) );
free(L);
return ret;
}
/*
@ -135,7 +159,7 @@ int mbedtls_cmac_setkey( mbedtls_cmac_context *ctx,
const unsigned char *key,
unsigned int keybits )
{
int ret;
int ret, blocksize;
const mbedtls_cipher_info_t *cipher_info;
cipher_info = mbedtls_cipher_info_from_values( cipher, keybits,
@ -143,8 +167,8 @@ int mbedtls_cmac_setkey( mbedtls_cmac_context *ctx,
if( cipher_info == NULL )
return( MBEDTLS_ERR_CMAC_BAD_INPUT );
if( cipher_info->block_size != 16 )
return( MBEDTLS_ERR_CMAC_BAD_INPUT );
ctx->K1 = mbedtls_calloc( cipher_info->block_size, sizeof( unsigned char ) );
ctx->K2 = mbedtls_calloc( cipher_info->block_size, sizeof( unsigned char ) );
mbedtls_cipher_free( &ctx->cipher_ctx );
@ -165,8 +189,15 @@ int mbedtls_cmac_setkey( mbedtls_cmac_context *ctx,
*/
void mbedtls_cmac_free( mbedtls_cmac_context *ctx )
{
int block_size;
block_size = ctx->cipher_ctx.cipher_info->block_size;
mbedtls_cipher_free( &ctx->cipher_ctx );
mbedtls_zeroize( ctx, sizeof( mbedtls_cmac_context ) );
mbedtls_zeroize(ctx->K1, block_size * sizeof( unsigned char ) );
mbedtls_zeroize(ctx->K2, block_size * sizeof( unsigned char ) );
mbedtls_free( ctx->K1 );
mbedtls_free( ctx->K2 );
}
/*
@ -176,16 +207,17 @@ void mbedtls_cmac_free( mbedtls_cmac_context *ctx )
* CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition.
*/
static void cmac_pad( unsigned char padded_block[16],
size_t padded_block_len,
const unsigned char *last_block,
size_t length )
size_t last_block_len )
{
size_t j;
for( j = 0; j < 16; j++ )
for( j = 0; j < padded_block_len; j++ )
{
if( j < length )
if( j < last_block_len )
padded_block[j] = last_block[j];
else if( j == length )
else if( j == last_block_len )
padded_block[j] = 0x80;
else
padded_block[j] = 0x00;
@ -193,11 +225,11 @@ static void cmac_pad( unsigned char padded_block[16],
}
/*
* XOR 128-bit
* XOR Block
* Here, macro results in smaller compiled code than static inline function
*/
#define XOR_128( o, i1, i2 ) \
for( i = 0; i < 16; i++ ) \
#define XOR_BLOCK( o, i1, i2 ) \
for( i = 0; i < block_size; i++ ) \
( o )[i] = ( i1 )[i] ^ ( i2 )[i];
/*
@ -205,9 +237,10 @@ static void cmac_pad( unsigned char padded_block[16],
*/
#define UPDATE_CMAC( x ) \
do { \
XOR_128( state, ( x ), state ); \
XOR_BLOCK( state, ( x ), state ); \
if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, \
state, 16, state, &olen ) ) != 0 ) \
state, block_size, \
state, &olen ) ) != 0 ) \
return( ret ); \
} while( 0 )
@ -219,50 +252,61 @@ int mbedtls_cmac_generate( mbedtls_cmac_context *ctx,
unsigned char *tag, size_t tag_len )
{
unsigned char state[16];
unsigned char M_last[16];
unsigned char *state;
unsigned char *M_last;
int n, i, j, ret, needs_padding;
size_t olen;
size_t olen, block_size;
ret = 0;
block_size = ctx->cipher_ctx.cipher_info->block_size;
state = mbedtls_calloc(block_size, sizeof(unsigned char) );
M_last = mbedtls_calloc(block_size, sizeof(unsigned char) );
/*
* Check in_len requirements: SP800-38B A
* 4 is a worst case bottom limit
*/
if( tag_len < 4 || tag_len > 16 || tag_len % 2 != 0 )
if( tag_len < 4 || tag_len > block_size || tag_len % 2 != 0 )
return( MBEDTLS_ERR_CMAC_BAD_INPUT );
if( in_len == 0 )
needs_padding = 1;
else
needs_padding = in_len % 16 != 0;
needs_padding = in_len % block_size != 0;
n = in_len / 16 + needs_padding;
n = in_len / block_size + needs_padding;
/* Calculate last block */
if( needs_padding )
{
cmac_pad( M_last, input + 16 * ( n - 1 ), in_len % 16 );
XOR_128( M_last, M_last, ctx->K2 );
cmac_pad( M_last, block_size, input + block_size * ( n - 1 ), in_len % block_size );
XOR_BLOCK( M_last, M_last, ctx->K2 );
}
else
{
/* Last block is complete block */
XOR_128( M_last, input + 16 * ( n - 1 ), ctx->K1 );
XOR_BLOCK( M_last, input + block_size * ( n - 1 ), ctx->K1 );
}
memset( state, 0, 16 );
memset( state, 0, block_size );
for( j = 0; j < n - 1; j++ )
UPDATE_CMAC( input + 16 * j );
UPDATE_CMAC( input + block_size * j );
UPDATE_CMAC( M_last );
memcpy( tag, state, 16 );
memcpy( tag, state, block_size );
return( 0 );
exit:
free(state);
free(M_last);
return( ret );
}
#undef XOR_128
#undef XOR_BLOCK
#undef UPDATE_CMAC
/*
@ -273,14 +317,17 @@ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx,
const unsigned char *tag, size_t tag_len )
{
int ret;
unsigned char check_tag[16];
unsigned char *check_tag;
unsigned char i;
int diff;
check_tag = mbedtls_calloc(ctx->cipher_ctx.cipher_info->block_size,
sizeof(unsigned char) );
if( ( ret = mbedtls_cmac_generate( ctx, input, in_len,
check_tag, tag_len ) ) != 0 )
{
return ret;
goto exit;
}
/* Check tag in "constant-time" */
@ -288,25 +335,29 @@ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx,
diff |= tag[i] ^ check_tag[i];
if( diff != 0 )
return( MBEDTLS_ERR_CMAC_VERIFY_FAILED );
ret = MBEDTLS_ERR_CMAC_VERIFY_FAILED;
goto exit;
return( 0 );
exit:
free(check_tag);
return ret;
}
/*
* PRF based on CMAC with AES-128
* TODO: add reference to the standard
* TODO: do we need to take a cmac_context as an argument here?
* See RFC 4615
*/
int mbedtls_aes_cmac_prf_128( mbedtls_cmac_context *ctx,
const unsigned char *key, size_t key_length,
int mbedtls_aes_cmac_prf_128( const unsigned char *key, size_t key_length,
const unsigned char *input, size_t in_len,
unsigned char *tag )
{
int ret;
mbedtls_cmac_context ctx;
unsigned char zero_key[16];
unsigned char int_key[16];
mbedtls_cmac_init(&ctx);
if( key_length == 16 )
{
/* Use key as is */
@ -322,21 +373,27 @@ int mbedtls_aes_cmac_prf_128( mbedtls_cmac_context *ctx,
ret = mbedtls_cmac_setkey( &zero_ctx, MBEDTLS_CIPHER_ID_AES,
zero_key, 8 * sizeof zero_key );
if( ret != 0 )
return( ret );
goto exit;
ret = mbedtls_cmac_generate( &zero_ctx, key, key_length, int_key, 16 );
if( ret != 0 )
return( ret );
goto exit;
}
ret = mbedtls_cmac_setkey( ctx, MBEDTLS_CIPHER_ID_AES,
ret = mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES,
int_key, 8 * sizeof int_key );
if( ret != 0 )
return( ret );
goto exit;
mbedtls_zeroize( int_key, sizeof( int_key ) );
return( mbedtls_cmac_generate( ctx, input, in_len, tag, 16 ) );
ret = mbedtls_cmac_generate( &ctx, input, in_len, tag, 16 );
exit:
mbedtls_cmac_free(&ctx);
return( ret );
}
#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
@ -345,30 +402,116 @@ int mbedtls_aes_cmac_prf_128( mbedtls_cmac_context *ctx,
* http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf
*/
#define NB_CMAC_TESTS 4
#define NB_CMAC_TESTS_AES_128 4
#define NB_CMAC_TESTS_AES_192 4
#define NB_CMAC_TESTS_AES_256 4
#define NB_CMAC_TESTS_3DES 4
#define NB_PRF_TESTS 3
/* Key */
static const unsigned char key[] = {
/* AES 128 Key */
static const unsigned char aes_128_key[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
};
/* AES 192 Key */
static const unsigned char aes_192_key[] = {
0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b
};
/* AES 256 Key */
static const unsigned char aes_256_key[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4
};
/* 3DES 112 bit key */
static const unsigned char des3_2key_key[] = {
0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5,
0x8a, 0x3d, 0x10, 0xba, 0x80, 0x57, 0x0d, 0x38,
0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5
};
/* 3DES 168 bit key */
static const unsigned char des3_3key_key[] = {
0x8a, 0xa8, 0x3b, 0xf8, 0xcb, 0xda, 0x10, 0x62,
0x0b, 0xc1, 0xbf, 0x19, 0xfb, 0xb6, 0xcd, 0x58,
0xbc, 0x31, 0x3d, 0x4a, 0x37, 0x1c, 0xa8, 0xb5
};
/* Assume we don't need to test Ek0 as this is a function of the cipher */
/* Subkey K1 */
static const unsigned char K1[] = {
static const unsigned char aes_128_k1[] = {
0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66,
0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde
};
/* Subkey K2 */
static const unsigned char K2[] = {
static const unsigned char aes_128_k2[] = {
0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc,
0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b
};
/* All Messages */
/* Subkey K1 */
static const unsigned char aes_192_k1[] = {
0x44, 0x8a, 0x5b, 0x1c, 0x93, 0x51, 0x4b, 0x27,
0x3e, 0xe6, 0x43, 0x9d, 0xd4, 0xda, 0xa2, 0x96
};
/* Subkey K2 */
static const unsigned char aes_192_k2[] = {
0x89, 0x14, 0xb6, 0x39, 0x26, 0xa2, 0x96, 0x4e,
0x7d, 0xcc, 0x87, 0x3b, 0xa9, 0xb5, 0x45, 0x2c
};
/* Subkey K1 */
static const unsigned char aes_256_k1[] = {
0xca, 0xd1, 0xed, 0x03, 0x29, 0x9e, 0xed, 0xac,
0x2e, 0x9a, 0x99, 0x80, 0x86, 0x21, 0x50, 0x2f
};
/* Subkey K2 */
static const unsigned char aes_256_k2[] = {
0x95, 0xa3, 0xda, 0x06, 0x53, 0x3d, 0xdb, 0x58,
0x5d, 0x35, 0x33, 0x01, 0x0c, 0x42, 0xa0, 0xd9
};
/* Subkey K1 */
static const unsigned char des3_2key_k1[] = {
0x8e, 0xcf, 0x37, 0x3e, 0xd7, 0x1a, 0xfa, 0xef
};
/* Subkey K2 */
static const unsigned char des3_2key_k2[] = {
0x1d, 0x9e, 0x6e, 0x7d, 0xae, 0x35, 0xf5, 0xc5
};
/* Subkey K1 */
static const unsigned char des3_3key_k1[] = {
0x91, 0x98, 0xe9, 0xd3, 0x14, 0xe6, 0x53, 0x5f
};
/* Subkey K2 */
static const unsigned char des3_3key_k2[] = {
0x23, 0x31, 0xd3, 0xa6, 0x29, 0xcc, 0xa6, 0xa5
};
/* Assume we don't need to test Ek0 as this is a function of the cipher */
/* All Messages are the same. The difference is the length */
static const unsigned char M[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
@ -380,7 +523,7 @@ static const unsigned char M[] = {
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
};
static const unsigned char T[NB_CMAC_TESTS][16] = {
static const unsigned char T_128[NB_CMAC_TESTS_3DES][16] = {
{
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,
0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46
@ -400,13 +543,91 @@ static const unsigned char T[NB_CMAC_TESTS][16] = {
};
/* Sizes in bytes */
static const size_t Mlen[NB_CMAC_TESTS] = {
static const size_t Mlen[NB_CMAC_TESTS_AES_192] = {
0,
16,
40,
64
};
static const size_t Mlen_3des[NB_CMAC_TESTS_AES_192] = {
0,
8,
20,
32
};
static const unsigned char T_256[NB_CMAC_TESTS_AES_192][16] = {
{
0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e,
0xfc, 0x6b, 0x55, 0x1f, 0x46, 0x67, 0xd9, 0x83
},
{
0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82,
0xbd, 0x4b, 0xf2, 0x8d, 0x8c, 0x37, 0xc3, 0x5c
},
{
0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2,
0x32, 0xf5, 0xb1, 0x69, 0xb9, 0xc9, 0x11, 0xe6
},
{
0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5,
0x69, 0x6a, 0x2c, 0x05, 0x6c, 0x31, 0x54, 0x10
}
};
static const unsigned char T_192[NB_CMAC_TESTS_AES_192][16] = {
{
0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5,
0x31, 0xca, 0xc4, 0x83, 0xde, 0x7a, 0x93, 0x67
},
{
0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90,
0x06, 0x62, 0xf6, 0x5e, 0x61, 0x7c, 0x51, 0x84
},
{
0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad,
0x08, 0x9a, 0x82, 0xe6, 0xee, 0x90, 0x8b, 0x0e
},
{
0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79,
0x4d, 0x77, 0x58, 0x96, 0x59, 0xf3, 0x9a, 0x11
}
};
static const unsigned char T_3des_2key[NB_CMAC_TESTS_AES_192][16] = {
{
0xbd, 0x2e, 0xbf, 0x9a, 0x3b, 0xa0, 0x03, 0x61
},
{
0x4f, 0xf2, 0xab, 0x81, 0x3c, 0x53, 0xce, 0x83
},
{
0x62, 0xdd, 0x1b, 0x47, 0x19, 0x02, 0xbd, 0x4e
},
{
0x31, 0xb1, 0xe4, 0x31, 0xda, 0xbc, 0x4e, 0xb8
}
};
static const unsigned char T_3des_3key[NB_CMAC_TESTS_AES_192][16] = {
{
0xb7, 0xa6, 0x88, 0xe1, 0x22, 0xff, 0xaf, 0x95
},
{
0x8e, 0x8f, 0x29, 0x31, 0x36, 0x28, 0x37, 0x97
},
{
0x74, 0x3d, 0xdb, 0xe0, 0xce, 0x2d, 0xc2, 0xed
},
{
0x33, 0xe6, 0xb1, 0x09, 0x24, 0x00, 0xea, 0xe5
}
};
/* PRF K */
static const unsigned char PRFK[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
@ -453,7 +674,8 @@ int mbedtls_cmac_self_test( int verbose )
mbedtls_cmac_init( &ctx );
if( mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, key, 8 * sizeof key ) != 0 )
// AES 128 bit key
if( mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, aes_128_key, 8 * sizeof(aes_128_key) ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: setup failed\n" );
@ -461,8 +683,8 @@ int mbedtls_cmac_self_test( int verbose )
return( 1 );
}
if( ( memcmp( ctx.K1, K1, 16 ) != 0 ) ||
( memcmp( ctx.K2, K2, 16 ) != 0 ) )
if( ( memcmp( ctx.K1, aes_128_k1, 16 ) != 0 ) ||
( memcmp( ctx.K2, aes_128_k2, 16 ) != 0 ) )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: subkey generation failed\n" );
@ -470,13 +692,13 @@ int mbedtls_cmac_self_test( int verbose )
return( 1 );
}
for( i = 0; i < NB_CMAC_TESTS; i++ )
for( i = 0; i < NB_CMAC_TESTS_AES_128; i++ )
{
mbedtls_printf( " AES-128-CMAC #%u: ", i );
ret = mbedtls_cmac_generate( &ctx, M, Mlen[i], tag, 16 );
if( ret != 0 ||
memcmp( tag, T[i], 16 ) != 0 )
memcmp( tag, T_128[i], 16 ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
@ -484,7 +706,7 @@ int mbedtls_cmac_self_test( int verbose )
return( 1 );
}
ret = mbedtls_cmac_verify( &ctx, M, Mlen[i], T[i], 16 );
ret = mbedtls_cmac_verify( &ctx, M, Mlen[i], T_128[i], 16 );
if( ret != 0 )
{
if( verbose != 0 )
@ -497,14 +719,130 @@ int mbedtls_cmac_self_test( int verbose )
mbedtls_printf( "passed\n" );
}
for( i = 0; i < NB_PRF_TESTS; i++ )
// AES 192 bit key
if( mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, aes_192_key, 8 * sizeof(aes_192_key) ) != 0 )
{
mbedtls_printf( " AES-CMAC-128-PRF #%u: ", i );
if( verbose != 0 )
mbedtls_printf( " CMAC: setup failed\n" );
mbedtls_aes_cmac_prf_128( &ctx, PRFK, PRFKlen[i], PRFM, 20, tag );
return( 1 );
}
if( ( memcmp( ctx.K1, aes_192_k1, 16 ) != 0 ) ||
( memcmp( ctx.K2, aes_192_k2, 16 ) != 0 ) )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: subkey generation failed\n" );
return( 1 );
}
for( i = 0; i < NB_CMAC_TESTS_AES_192; i++ )
{
mbedtls_printf( " AES-192-CMAC #%u: ", i );
ret = mbedtls_cmac_generate( &ctx, M, Mlen[i], tag, 16 );
if( ret != 0 ||
memcmp( tag, PRFT[i], 16 ) != 0 )
memcmp( tag, T_192[i], 16 ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
}
ret = mbedtls_cmac_verify( &ctx, M, Mlen[i], T_192[i], 16 );
if( ret != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
}
// 3DES 2 key bit key
if( (ret = mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_3DES, des3_2key_key, 8 * sizeof(des3_2key_key) )) != 0 )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: setup failed %i\n", ret);
return( 1 );
}
if( ( memcmp( ctx.K1, des3_2key_k1, 8 ) != 0 ) ||
( memcmp( ctx.K2, des3_2key_k2, 8 ) != 0 ) )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: subkey generation failed\n" );
return( 1 );
}
for( i = 0; i < NB_CMAC_TESTS_3DES; i++ )
{
mbedtls_printf( " DES-112-CMAC #%u: ", i );
ret = mbedtls_cmac_generate( &ctx, M, Mlen_3des[i], tag, 8 );
if( ret != 0 ||
memcmp( tag, T_3des_2key[i], 8 ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
}
ret = mbedtls_cmac_verify( &ctx, M, Mlen_3des[i], T_3des_2key[i], 8 );
if( ret != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
}
// 3DES 3 key
if( (ret = mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_3DES, des3_3key_key, 8 * sizeof(des3_3key_key) )) != 0 )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: setup failed %i\n", ret);
return( 1 );
}
if( ( memcmp( ctx.K1, des3_3key_k1, 8 ) != 0 ) ||
( memcmp( ctx.K2, des3_3key_k2, 8 ) != 0 ) )
{
if( verbose != 0 )
mbedtls_printf( " CMAC: subkey generation failed\n" );
return( 1 );
}
for( i = 0; i < NB_CMAC_TESTS_3DES; i++ )
{
mbedtls_printf( " DES-168-CMAC #%u: ", i );
ret = mbedtls_cmac_generate( &ctx, M, Mlen_3des[i], tag, 8 );
if( ret != 0 ||
memcmp( tag, T_3des_3key[i], 8 ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
}
ret = mbedtls_cmac_verify( &ctx, M, Mlen_3des[i], T_3des_3key[i], 8 );
if( ret != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
@ -518,6 +856,25 @@ int mbedtls_cmac_self_test( int verbose )
mbedtls_cmac_free( &ctx );
for( i = 0; i < NB_PRF_TESTS; i++ )
{
mbedtls_printf( " AES-CMAC-128-PRF #%u: ", i );
mbedtls_aes_cmac_prf_128( PRFK, PRFKlen[i], PRFM, 20, tag );
if( ret != 0 ||
memcmp( tag, PRFT[i], 16 ) != 0 )
{
if( verbose != 0 )
mbedtls_printf( "failed\n" );
return( 1 );
} else if( verbose != 0 )
{
mbedtls_printf( "passed\n" );
}
}
if( verbose != 0 )
mbedtls_printf( "\n" );