mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-11-22 10:55:38 +01:00
Generate RSA keys according to FIPS 186-4
The specification requires that P and Q are not too close. The specification also requires that you generate a P and stick with it, generating new Qs until you have found a pair that works. In practice, it turns out that sometimes a particular P results in it being very unlikely a Q can be found matching all the constraints. So we keep the original behavior where a new P and Q are generated every round.
This commit is contained in:
parent
666892792d
commit
c645bfe176
@ -495,6 +495,9 @@ size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
|
||||
|
||||
/*
|
||||
* Generate an RSA keypair
|
||||
*
|
||||
* This generation method follows the RSA key pair generation procedure of
|
||||
* FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
|
||||
*/
|
||||
int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
@ -516,8 +519,9 @@ int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
||||
|
||||
/*
|
||||
* find primes P and Q with Q < P so that:
|
||||
* 1. GCD( E, (P-1)*(Q-1) ) == 1
|
||||
* 2. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
|
||||
* 1. |P-Q| > 2^( nbits / 2 - 100 )
|
||||
* 2. GCD( E, (P-1)*(Q-1) ) == 1
|
||||
* 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
|
||||
*/
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
|
||||
|
||||
@ -529,14 +533,13 @@ int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
|
||||
f_rng, p_rng ) );
|
||||
|
||||
if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
|
||||
/* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
|
||||
if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
|
||||
continue;
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
|
||||
if( mbedtls_mpi_bitlen( &ctx->N ) != nbits )
|
||||
continue;
|
||||
|
||||
if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
|
||||
/* not required by any standards, but some users rely on the fact that P > Q */
|
||||
if( H.s < 0 )
|
||||
mbedtls_mpi_swap( &ctx->P, &ctx->Q );
|
||||
|
||||
/* Temporarily replace P,Q by P-1, Q-1 */
|
||||
@ -544,12 +547,12 @@ int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
|
||||
|
||||
/* check GCD( E, (P-1)*(Q-1) ) == 1 */
|
||||
/* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) );
|
||||
if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
|
||||
continue;
|
||||
|
||||
/* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) */
|
||||
/* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
|
||||
@ -565,6 +568,8 @@ int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) );
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
|
||||
|
||||
ctx->len = mbedtls_mpi_size( &ctx->N );
|
||||
|
||||
#if !defined(MBEDTLS_RSA_NO_CRT)
|
||||
|
Loading…
Reference in New Issue
Block a user