Move exercise_key and related functions to their own module

Move mbedtls_test_psa_exercise_key() (formerly exercise_key()) and
related functions to its own module. Export the few auxiliary
functions that are also called directly.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
Gilles Peskine 2021-02-13 00:41:11 +01:00
parent 8e94efe4ba
commit e78b00210a
3 changed files with 1005 additions and 975 deletions

View File

@ -26,5 +26,143 @@
#include <psa/crypto.h>
/* A hash algorithm that is known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(PSA_WANT_ALG_MD2)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD2
#elif defined(PSA_WANT_ALG_MD4)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD4
#elif defined(PSA_WANT_ALG_MD5)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD5
/* MBEDTLS_RIPEMD160_C omitted. This is necessary for the sake of
* exercise_signature_key() because Mbed TLS doesn't support RIPEMD160
* in RSA PKCS#1v1.5 signatures. A RIPEMD160-only configuration would be
* implausible anyway. */
#elif defined(PSA_WANT_ALG_SHA_1)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_1
#elif defined(PSA_WANT_ALG_SHA_256)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_256
#elif defined(PSA_WANT_ALG_SHA_384)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_384
#elif defined(PSA_WANT_ALG_SHA_512)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_512
#elif defined(PSA_WANT_ALG_SHA3_256)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA3_256
#else
#undef KNOWN_SUPPORTED_HASH_ALG
#endif
/* A block cipher that is known to be supported.
*
* For simplicity's sake, stick to block ciphers with 16-byte blocks.
*/
#if defined(MBEDTLS_AES_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_AES
#elif defined(MBEDTLS_ARIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_ARIA
#elif defined(MBEDTLS_CAMELLIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_CAMELLIA
#undef KNOWN_SUPPORTED_BLOCK_CIPHER
#endif
/* A MAC mode that is known to be supported.
*
* It must either be HMAC with #KNOWN_SUPPORTED_HASH_ALG or
* a block cipher-based MAC with #KNOWN_SUPPORTED_BLOCK_CIPHER.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_HASH_ALG) && defined(PSA_WANT_ALG_HMAC)
#define KNOWN_SUPPORTED_MAC_ALG ( PSA_ALG_HMAC( KNOWN_SUPPORTED_HASH_ALG ) )
#define KNOWN_SUPPORTED_MAC_KEY_TYPE PSA_KEY_TYPE_HMAC
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CMAC_C)
#define KNOWN_SUPPORTED_MAC_ALG PSA_ALG_CMAC
#define KNOWN_SUPPORTED_MAC_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#else
#undef KNOWN_SUPPORTED_MAC_ALG
#undef KNOWN_SUPPORTED_MAC_KEY_TYPE
#endif
/* A cipher algorithm and key type that are known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CTR)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CTR
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CBC)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CBC_NO_PADDING
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CFB
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_OFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_OFB
#else
#undef KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#endif
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER_ALG)
#define KNOWN_SUPPORTED_CIPHER_ALG KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#elif defined(MBEDTLS_RC4_C)
#define KNOWN_SUPPORTED_CIPHER_ALG PSA_ALG_RC4
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE PSA_KEY_TYPE_RC4
#else
#undef KNOWN_SUPPORTED_CIPHER_ALG
#undef KNOWN_SUPPORTED_CIPHER_KEY_TYPE
#endif
int mbedtls_test_psa_setup_key_derivation_wrap(
psa_key_derivation_operation_t* operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
unsigned char* input1, size_t input1_length,
unsigned char* input2, size_t input2_length,
size_t capacity );
psa_status_t mbedtls_test_psa_raw_key_agreement_with_self(
psa_algorithm_t alg,
mbedtls_svc_key_id_t key );
psa_status_t mbedtls_test_psa_key_agreement_with_self(
psa_key_derivation_operation_t *operation,
mbedtls_svc_key_id_t key );
int mbedtls_test_psa_exported_key_sanity_check(
psa_key_type_t type, size_t bits,
uint8_t *exported, size_t exported_length );
/** Do smoke tests on a key.
*
* Perform one of each operation indicated by \p alg (decrypt/encrypt,
* sign/verify, or derivation) that is permitted according to \p usage.
* \p usage and \p alg should correspond to the expected policy on the
* key.
*
* Export the key if permitted by \p usage, and check that the output
* looks sensible. If \p usage forbids export, check that
* \p psa_export_key correctly rejects the attempt. If the key is
* asymmetric, also check \p psa_export_public_key.
*
* If the key fails the tests, this function calls the test framework's
* `mbedtls_test_fail` function and returns false. Otherwise this function
* returns true. Therefore it should be used as follows:
* ```
* if( ! exercise_key( ... ) ) goto exit;
* ```
*
* \param key The key to exercise. It should be capable of performing
* \p alg.
* \param usage The usage flags to assume.
* \param alg The algorithm to exercise.
*
* \retval 0 The key failed the smoke tests.
* \retval 1 The key passed the smoke tests.
*/
int mbedtls_test_psa_exercise_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg );
psa_key_usage_t mbedtls_test_psa_usage_to_exercise( psa_key_type_t type,
psa_algorithm_t alg );
#endif /* PSA_EXERCISE_KEY_H */

View File

@ -21,11 +21,876 @@
#include <test/helpers.h>
#include <test/macros.h>
#include <test/psa_crypto_helpers.h>
#include <test/psa_exercise_key.h>
#if defined(MBEDTLS_PSA_CRYPTO_C)
#include <mbedtls/asn1.h>
#include <psa/crypto.h>
#include <test/asn1_helpers.h>
#include <test/psa_crypto_helpers.h>
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
static int lifetime_is_dynamic_secure_element( psa_key_lifetime_t lifetime )
{
return( PSA_KEY_LIFETIME_GET_LOCATION( lifetime ) !=
PSA_KEY_LOCATION_LOCAL_STORAGE );
}
#endif
static int check_key_attributes_sanity( mbedtls_svc_key_id_t key )
{
int ok = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_lifetime_t lifetime;
mbedtls_svc_key_id_t id;
psa_key_type_t type;
psa_key_type_t bits;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
lifetime = psa_get_key_lifetime( &attributes );
id = psa_get_key_id( &attributes );
type = psa_get_key_type( &attributes );
bits = psa_get_key_bits( &attributes );
/* Persistence */
if( PSA_KEY_LIFETIME_IS_VOLATILE( lifetime ) )
{
TEST_ASSERT(
( PSA_KEY_ID_VOLATILE_MIN <=
MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ) &&
( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) <=
PSA_KEY_ID_VOLATILE_MAX ) );
}
else
{
TEST_ASSERT(
( PSA_KEY_ID_USER_MIN <= MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ) &&
( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) <= PSA_KEY_ID_USER_MAX ) );
}
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
/* randomly-generated 64-bit constant, should never appear in test data */
psa_key_slot_number_t slot_number = 0xec94d4a5058a1a21;
psa_status_t status = psa_get_key_slot_number( &attributes, &slot_number );
if( lifetime_is_dynamic_secure_element( lifetime ) )
{
/* Mbed Crypto currently always exposes the slot number to
* applications. This is not mandated by the PSA specification
* and may change in future versions. */
TEST_EQUAL( status, 0 );
TEST_ASSERT( slot_number != 0xec94d4a5058a1a21 );
}
else
{
TEST_EQUAL( status, PSA_ERROR_INVALID_ARGUMENT );
}
#endif
/* Type and size */
TEST_ASSERT( type != 0 );
TEST_ASSERT( bits != 0 );
TEST_ASSERT( bits <= PSA_MAX_KEY_BITS );
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_ASSERT( bits % 8 == 0 );
/* MAX macros concerning specific key types */
if( PSA_KEY_TYPE_IS_ECC( type ) )
TEST_ASSERT( bits <= PSA_VENDOR_ECC_MAX_CURVE_BITS );
else if( PSA_KEY_TYPE_IS_RSA( type ) )
TEST_ASSERT( bits <= PSA_VENDOR_RSA_MAX_KEY_BITS );
TEST_ASSERT( PSA_BLOCK_CIPHER_BLOCK_LENGTH( type ) <= PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE );
ok = 1;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
return( ok );
}
static int exercise_mac_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
const unsigned char input[] = "foo";
unsigned char mac[PSA_MAC_MAX_SIZE] = {0};
size_t mac_length = sizeof( mac );
if( usage & PSA_KEY_USAGE_SIGN_HASH )
{
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
mac, sizeof( mac ),
&mac_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY_HASH )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN_HASH ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation, mac, mac_length ),
verify_status );
}
return( 1 );
exit:
psa_mac_abort( &operation );
return( 0 );
}
static int exercise_cipher_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[16] = {0};
size_t iv_length = sizeof( iv );
const unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[32] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
unsigned char decrypted[sizeof( ciphertext )];
size_t part_length;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
iv, sizeof( iv ),
&iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
PSA_ASSERT( psa_cipher_finish( &operation,
ciphertext + ciphertext_length,
sizeof( ciphertext ) - ciphertext_length,
&part_length ) );
ciphertext_length += part_length;
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status;
int maybe_invalid_padding = 0;
if( ! ( usage & PSA_KEY_USAGE_ENCRYPT ) )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
/* This should be PSA_CIPHER_GET_IV_SIZE but the API doesn't
* have this macro yet. */
iv_length = PSA_BLOCK_CIPHER_BLOCK_LENGTH(
psa_get_key_type( &attributes ) );
maybe_invalid_padding = ! PSA_ALG_IS_STREAM_CIPHER( alg );
psa_reset_key_attributes( &attributes );
}
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
ciphertext, ciphertext_length,
decrypted, sizeof( decrypted ),
&part_length ) );
status = psa_cipher_finish( &operation,
decrypted + part_length,
sizeof( decrypted ) - part_length,
&part_length );
/* For a stream cipher, all inputs are valid. For a block cipher,
* if the input is some aribtrary data rather than an actual
ciphertext, a padding error is likely. */
if( maybe_invalid_padding )
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INVALID_PADDING );
else
PSA_ASSERT( status );
}
return( 1 );
exit:
psa_cipher_abort( &operation );
return( 0 );
}
static int exercise_aead_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char nonce[16] = {0};
size_t nonce_length = sizeof( nonce );
unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[48] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = sizeof( ciphertext );
/* Default IV length for AES-GCM is 12 bytes */
if( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg, 0 ) ==
PSA_ALG_AEAD_WITH_SHORTENED_TAG( PSA_ALG_GCM, 0 ) )
{
nonce_length = 12;
}
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_aead_encrypt( key, alg,
nonce, nonce_length,
NULL, 0,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_ENCRYPT ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_aead_decrypt( key, alg,
nonce, nonce_length,
NULL, 0,
ciphertext, ciphertext_length,
plaintext, sizeof( plaintext ),
&plaintext_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_signature_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
size_t payload_length = 16;
unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length = sizeof( signature );
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
/* If the policy allows signing with any hash, just pick one. */
if( PSA_ALG_IS_HASH_AND_SIGN( alg ) && hash_alg == PSA_ALG_ANY_HASH )
{
#if defined(KNOWN_SUPPORTED_HASH_ALG)
hash_alg = KNOWN_SUPPORTED_HASH_ALG;
alg ^= PSA_ALG_ANY_HASH ^ hash_alg;
#else
mbedtls_test_fail( "No hash algorithm for hash-and-sign testing",
__LINE__, __FILE__ );
return( 1 );
#endif
}
if( usage & PSA_KEY_USAGE_SIGN_HASH )
{
/* Some algorithms require the payload to have the size of
* the hash encoded in the algorithm. Use this input size
* even for algorithms that allow other input sizes. */
if( hash_alg != 0 )
payload_length = PSA_HASH_LENGTH( hash_alg );
PSA_ASSERT( psa_sign_hash( key, alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY_HASH )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN_HASH ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_verify_hash( key, alg,
payload, payload_length,
signature, signature_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_asymmetric_encryption_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char plaintext[256] = "Hello, world...";
unsigned char ciphertext[256] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = 16;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_asymmetric_encrypt( key, alg,
plaintext, plaintext_length,
NULL, 0,
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status =
psa_asymmetric_decrypt( key, alg,
ciphertext, ciphertext_length,
NULL, 0,
plaintext, sizeof( plaintext ),
&plaintext_length );
TEST_ASSERT( status == PSA_SUCCESS ||
( ( usage & PSA_KEY_USAGE_ENCRYPT ) == 0 &&
( status == PSA_ERROR_INVALID_ARGUMENT ||
status == PSA_ERROR_INVALID_PADDING ) ) );
}
return( 1 );
exit:
return( 0 );
}
int mbedtls_test_psa_setup_key_derivation_wrap(
psa_key_derivation_operation_t* operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
unsigned char* input1, size_t input1_length,
unsigned char* input2, size_t input2_length,
size_t capacity )
{
PSA_ASSERT( psa_key_derivation_setup( operation, alg ) );
if( PSA_ALG_IS_HKDF( alg ) )
{
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_SALT,
input1, input1_length ) );
PSA_ASSERT( psa_key_derivation_input_key( operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key ) );
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_INFO,
input2,
input2_length ) );
}
else if( PSA_ALG_IS_TLS12_PRF( alg ) ||
PSA_ALG_IS_TLS12_PSK_TO_MS( alg ) )
{
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_SEED,
input1, input1_length ) );
PSA_ASSERT( psa_key_derivation_input_key( operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key ) );
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_LABEL,
input2, input2_length ) );
}
else
{
TEST_ASSERT( ! "Key derivation algorithm not supported" );
}
if( capacity != SIZE_MAX )
PSA_ASSERT( psa_key_derivation_set_capacity( operation, capacity ) );
return( 1 );
exit:
return( 0 );
}
static int exercise_key_derivation_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char input1[] = "Input 1";
size_t input1_length = sizeof( input1 );
unsigned char input2[] = "Input 2";
size_t input2_length = sizeof( input2 );
unsigned char output[1];
size_t capacity = sizeof( output );
if( usage & PSA_KEY_USAGE_DERIVE )
{
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, key, alg,
input1, input1_length,
input2, input2_length,
capacity ) )
goto exit;
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output,
capacity ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
}
return( 1 );
exit:
return( 0 );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
psa_status_t mbedtls_test_psa_key_agreement_with_self(
psa_key_derivation_operation_t *operation,
mbedtls_svc_key_id_t key )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_derivation_key_agreement fails. This isn't fully satisfactory,
* but it's good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR( private_key_type );
public_key_length = PSA_EXPORT_KEY_OUTPUT_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( key, public_key, public_key_length,
&public_key_length ) );
status = psa_key_derivation_key_agreement(
operation, PSA_KEY_DERIVATION_INPUT_SECRET, key,
public_key, public_key_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( public_key );
return( status );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
psa_status_t mbedtls_test_psa_raw_key_agreement_with_self(
psa_algorithm_t alg,
mbedtls_svc_key_id_t key )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
uint8_t output[1024];
size_t output_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_derivation_key_agreement fails. This isn't fully satisfactory,
* but it's good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR( private_key_type );
public_key_length = PSA_EXPORT_KEY_OUTPUT_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( key,
public_key, public_key_length,
&public_key_length ) );
status = psa_raw_key_agreement( alg, key,
public_key, public_key_length,
output, sizeof( output ), &output_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( public_key );
return( status );
}
static int exercise_raw_key_agreement_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( mbedtls_test_psa_raw_key_agreement_with_self( alg, key ) );
}
ok = 1;
exit:
return( ok );
}
static int exercise_key_agreement_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char output[1];
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
PSA_ASSERT( mbedtls_test_psa_key_agreement_with_self( &operation, key ) );
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output,
sizeof( output ) ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
}
ok = 1;
exit:
return( ok );
}
int mbedtls_test_psa_exported_key_sanity_check(
psa_key_type_t type, size_t bits,
uint8_t *exported, size_t exported_length )
{
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_EQUAL( exported_length, ( bits + 7 ) / 8 );
else
TEST_ASSERT( exported_length <= PSA_EXPORT_KEY_OUTPUT_SIZE( type, bits ) );
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
{
/* Check the parity bits. */
unsigned i;
for( i = 0; i < bits / 8; i++ )
{
unsigned bit_count = 0;
unsigned m;
for( m = 1; m <= 0x100; m <<= 1 )
{
if( exported[i] & m )
++bit_count;
}
TEST_ASSERT( bit_count % 2 != 0 );
}
}
else
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( type == PSA_KEY_TYPE_RSA_KEY_PAIR )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ), 0 );
TEST_EQUAL( p + len, end );
if( ! mbedtls_test_asn1_skip_integer( &p, end, 0, 0, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
/* Require d to be at least half the size of n. */
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits, 1 ) )
goto exit;
/* Require p and q to be at most half the size of n, rounded up. */
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEY_PAIR( type ) )
{
/* Just the secret value */
TEST_EQUAL( exported_length, PSA_BITS_TO_BYTES( bits ) );
}
else
#endif /* MBEDTLS_ECP_C */
if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
#if defined(MBEDTLS_RSA_C)
if( type == PSA_KEY_TYPE_RSA_PUBLIC_KEY )
{
size_t len;
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ),
0 );
TEST_EQUAL( p + len, end );
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY( type ) )
{
if( PSA_KEY_TYPE_ECC_GET_FAMILY( type ) == PSA_ECC_FAMILY_MONTGOMERY )
{
/* The representation of an ECC Montgomery public key is
* the raw compressed point */
TEST_EQUAL( p + PSA_BITS_TO_BYTES( bits ), end );
}
else
{
/* The representation of an ECC Weierstrass public key is:
* - The byte 0x04;
* - `x_P` as a `ceiling(m/8)`-byte string, big-endian;
* - `y_P` as a `ceiling(m/8)`-byte string, big-endian;
* - where m is the bit size associated with the curve.
*/
TEST_EQUAL( p + 1 + 2 * PSA_BITS_TO_BYTES( bits ), end );
TEST_EQUAL( p[0], 4 );
}
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[47];
mbedtls_snprintf( message, sizeof( message ),
"No sanity check for public key type=0x%08lx",
(unsigned long) type );
mbedtls_test_fail( message, __LINE__, __FILE__ );
(void) p;
(void) end;
return( 0 );
}
}
else
{
/* No sanity checks for other types */
}
return( 1 );
exit:
return( 0 );
}
static int exercise_export_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
if( ( usage & PSA_KEY_USAGE_EXPORT ) == 0 &&
! PSA_KEY_TYPE_IS_PUBLIC_KEY( psa_get_key_type( &attributes ) ) )
{
TEST_EQUAL( psa_export_key( key, exported,
exported_size, &exported_length ),
PSA_ERROR_NOT_PERMITTED );
ok = 1;
goto exit;
}
PSA_ASSERT( psa_export_key( key,
exported, exported_size,
&exported_length ) );
ok = mbedtls_test_psa_exported_key_sanity_check(
psa_get_key_type( &attributes ), psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( exported );
return( ok );
}
static int exercise_export_public_key( mbedtls_svc_key_id_t key )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t public_type;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( psa_get_key_type( &attributes ) ) )
{
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
TEST_EQUAL( psa_export_public_key( key, exported,
exported_size, &exported_length ),
PSA_ERROR_INVALID_ARGUMENT );
ok = 1;
goto exit;
}
public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(
psa_get_key_type( &attributes ) );
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE( public_type,
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
PSA_ASSERT( psa_export_public_key( key,
exported, exported_size,
&exported_length ) );
ok = mbedtls_test_psa_exported_key_sanity_check(
public_type, psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( exported );
return( ok );
}
int mbedtls_test_psa_exercise_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok;
if( ! check_key_attributes_sanity( key ) )
return( 0 );
if( alg == 0 )
ok = 1; /* If no algorihm, do nothing (used for raw data "keys"). */
else if( PSA_ALG_IS_MAC( alg ) )
ok = exercise_mac_key( key, usage, alg );
else if( PSA_ALG_IS_CIPHER( alg ) )
ok = exercise_cipher_key( key, usage, alg );
else if( PSA_ALG_IS_AEAD( alg ) )
ok = exercise_aead_key( key, usage, alg );
else if( PSA_ALG_IS_SIGN( alg ) )
ok = exercise_signature_key( key, usage, alg );
else if( PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
ok = exercise_asymmetric_encryption_key( key, usage, alg );
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
ok = exercise_key_derivation_key( key, usage, alg );
else if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
ok = exercise_raw_key_agreement_key( key, usage, alg );
else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
ok = exercise_key_agreement_key( key, usage, alg );
else
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"No code to exercise alg=0x%08lx",
(unsigned long) alg );
mbedtls_test_fail( message, __LINE__, __FILE__ );
ok = 0;
}
ok = ok && exercise_export_key( key, usage );
ok = ok && exercise_export_public_key( key );
return( ok );
}
psa_key_usage_t mbedtls_test_psa_usage_to_exercise( psa_key_type_t type,
psa_algorithm_t alg )
{
if( PSA_ALG_IS_MAC( alg ) || PSA_ALG_IS_SIGN( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_VERIFY_HASH :
PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH );
}
else if( PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) ||
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_ENCRYPT :
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
}
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) ||
PSA_ALG_IS_KEY_AGREEMENT( alg ) )
{
return( PSA_KEY_USAGE_DERIVE );
}
else
{
return( 0 );
}
}
#endif /* MBEDTLS_PSA_CRYPTO_C */

View File

@ -14,103 +14,11 @@
#include "test/asn1_helpers.h"
#include "test/psa_crypto_helpers.h"
#include "test/psa_exercise_key.h"
/** An invalid export length that will never be set by psa_export_key(). */
static const size_t INVALID_EXPORT_LENGTH = ~0U;
/* A hash algorithm that is known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(PSA_WANT_ALG_MD2)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD2
#elif defined(PSA_WANT_ALG_MD4)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD4
#elif defined(PSA_WANT_ALG_MD5)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD5
/* MBEDTLS_RIPEMD160_C omitted. This is necessary for the sake of
* exercise_signature_key() because Mbed TLS doesn't support RIPEMD160
* in RSA PKCS#1v1.5 signatures. A RIPEMD160-only configuration would be
* implausible anyway. */
#elif defined(PSA_WANT_ALG_SHA_1)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_1
#elif defined(PSA_WANT_ALG_SHA_256)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_256
#elif defined(PSA_WANT_ALG_SHA_384)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_384
#elif defined(PSA_WANT_ALG_SHA_512)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_512
#elif defined(PSA_WANT_ALG_SHA3_256)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA3_256
#else
#undef KNOWN_SUPPORTED_HASH_ALG
#endif
/* A block cipher that is known to be supported.
*
* For simplicity's sake, stick to block ciphers with 16-byte blocks.
*/
#if defined(MBEDTLS_AES_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_AES
#elif defined(MBEDTLS_ARIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_ARIA
#elif defined(MBEDTLS_CAMELLIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_CAMELLIA
#undef KNOWN_SUPPORTED_BLOCK_CIPHER
#endif
/* A MAC mode that is known to be supported.
*
* It must either be HMAC with #KNOWN_SUPPORTED_HASH_ALG or
* a block cipher-based MAC with #KNOWN_SUPPORTED_BLOCK_CIPHER.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_HASH_ALG) && defined(PSA_WANT_ALG_HMAC)
#define KNOWN_SUPPORTED_MAC_ALG ( PSA_ALG_HMAC( KNOWN_SUPPORTED_HASH_ALG ) )
#define KNOWN_SUPPORTED_MAC_KEY_TYPE PSA_KEY_TYPE_HMAC
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CMAC_C)
#define KNOWN_SUPPORTED_MAC_ALG PSA_ALG_CMAC
#define KNOWN_SUPPORTED_MAC_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#else
#undef KNOWN_SUPPORTED_MAC_ALG
#undef KNOWN_SUPPORTED_MAC_KEY_TYPE
#endif
/* A cipher algorithm and key type that are known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CTR)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CTR
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CBC)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CBC_NO_PADDING
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CFB
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_OFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_OFB
#else
#undef KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#endif
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER_ALG)
#define KNOWN_SUPPORTED_CIPHER_ALG KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#elif defined(MBEDTLS_RC4_C)
#define KNOWN_SUPPORTED_CIPHER_ALG PSA_ALG_RC4
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE PSA_KEY_TYPE_RC4
#else
#undef KNOWN_SUPPORTED_CIPHER_ALG
#undef KNOWN_SUPPORTED_CIPHER_KEY_TYPE
#endif
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
static int lifetime_is_dynamic_secure_element( psa_key_lifetime_t lifetime )
{
return( PSA_KEY_LIFETIME_GET_LOCATION( lifetime ) !=
PSA_KEY_LOCATION_LOCAL_STORAGE );
}
#endif
/** Test if a buffer contains a constant byte value.
*
* `mem_is_char(buffer, c, size)` is true after `memset(buffer, c, size)`.
@ -217,80 +125,6 @@ static int construct_fake_rsa_key( unsigned char *buffer,
return( len );
}
static int check_key_attributes_sanity( mbedtls_svc_key_id_t key )
{
int ok = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_lifetime_t lifetime;
mbedtls_svc_key_id_t id;
psa_key_type_t type;
psa_key_type_t bits;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
lifetime = psa_get_key_lifetime( &attributes );
id = psa_get_key_id( &attributes );
type = psa_get_key_type( &attributes );
bits = psa_get_key_bits( &attributes );
/* Persistence */
if( PSA_KEY_LIFETIME_IS_VOLATILE( lifetime ) )
{
TEST_ASSERT(
( PSA_KEY_ID_VOLATILE_MIN <=
MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ) &&
( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) <=
PSA_KEY_ID_VOLATILE_MAX ) );
}
else
{
TEST_ASSERT(
( PSA_KEY_ID_USER_MIN <= MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ) &&
( MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) <= PSA_KEY_ID_USER_MAX ) );
}
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
/* randomly-generated 64-bit constant, should never appear in test data */
psa_key_slot_number_t slot_number = 0xec94d4a5058a1a21;
psa_status_t status = psa_get_key_slot_number( &attributes, &slot_number );
if( lifetime_is_dynamic_secure_element( lifetime ) )
{
/* Mbed Crypto currently always exposes the slot number to
* applications. This is not mandated by the PSA specification
* and may change in future versions. */
TEST_EQUAL( status, 0 );
TEST_ASSERT( slot_number != 0xec94d4a5058a1a21 );
}
else
{
TEST_EQUAL( status, PSA_ERROR_INVALID_ARGUMENT );
}
#endif
/* Type and size */
TEST_ASSERT( type != 0 );
TEST_ASSERT( bits != 0 );
TEST_ASSERT( bits <= PSA_MAX_KEY_BITS );
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_ASSERT( bits % 8 == 0 );
/* MAX macros concerning specific key types */
if( PSA_KEY_TYPE_IS_ECC( type ) )
TEST_ASSERT( bits <= PSA_VENDOR_ECC_MAX_CURVE_BITS );
else if( PSA_KEY_TYPE_IS_RSA( type ) )
TEST_ASSERT( bits <= PSA_VENDOR_RSA_MAX_KEY_BITS );
TEST_ASSERT( PSA_BLOCK_CIPHER_BLOCK_LENGTH( type ) <= PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE );
ok = 1;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
return( ok );
}
int exercise_mac_setup( psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
@ -358,813 +192,6 @@ exit:
return( 0 );
}
static int exercise_mac_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
const unsigned char input[] = "foo";
unsigned char mac[PSA_MAC_MAX_SIZE] = {0};
size_t mac_length = sizeof( mac );
if( usage & PSA_KEY_USAGE_SIGN_HASH )
{
PSA_ASSERT( psa_mac_sign_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
mac, sizeof( mac ),
&mac_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY_HASH )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN_HASH ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
PSA_ASSERT( psa_mac_verify_setup( &operation, key, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation, mac, mac_length ),
verify_status );
}
return( 1 );
exit:
psa_mac_abort( &operation );
return( 0 );
}
static int exercise_cipher_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[16] = {0};
size_t iv_length = sizeof( iv );
const unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[32] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
unsigned char decrypted[sizeof( ciphertext )];
size_t part_length;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
iv, sizeof( iv ),
&iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
PSA_ASSERT( psa_cipher_finish( &operation,
ciphertext + ciphertext_length,
sizeof( ciphertext ) - ciphertext_length,
&part_length ) );
ciphertext_length += part_length;
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status;
int maybe_invalid_padding = 0;
if( ! ( usage & PSA_KEY_USAGE_ENCRYPT ) )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
/* This should be PSA_CIPHER_GET_IV_SIZE but the API doesn't
* have this macro yet. */
iv_length = PSA_BLOCK_CIPHER_BLOCK_LENGTH(
psa_get_key_type( &attributes ) );
maybe_invalid_padding = ! PSA_ALG_IS_STREAM_CIPHER( alg );
psa_reset_key_attributes( &attributes );
}
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
ciphertext, ciphertext_length,
decrypted, sizeof( decrypted ),
&part_length ) );
status = psa_cipher_finish( &operation,
decrypted + part_length,
sizeof( decrypted ) - part_length,
&part_length );
/* For a stream cipher, all inputs are valid. For a block cipher,
* if the input is some aribtrary data rather than an actual
ciphertext, a padding error is likely. */
if( maybe_invalid_padding )
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INVALID_PADDING );
else
PSA_ASSERT( status );
}
return( 1 );
exit:
psa_cipher_abort( &operation );
return( 0 );
}
static int exercise_aead_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char nonce[16] = {0};
size_t nonce_length = sizeof( nonce );
unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[48] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = sizeof( ciphertext );
/* Default IV length for AES-GCM is 12 bytes */
if( PSA_ALG_AEAD_WITH_SHORTENED_TAG( alg, 0 ) ==
PSA_ALG_AEAD_WITH_SHORTENED_TAG( PSA_ALG_GCM, 0 ) )
{
nonce_length = 12;
}
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_aead_encrypt( key, alg,
nonce, nonce_length,
NULL, 0,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_ENCRYPT ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_aead_decrypt( key, alg,
nonce, nonce_length,
NULL, 0,
ciphertext, ciphertext_length,
plaintext, sizeof( plaintext ),
&plaintext_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_signature_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
size_t payload_length = 16;
unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length = sizeof( signature );
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
/* If the policy allows signing with any hash, just pick one. */
if( PSA_ALG_IS_HASH_AND_SIGN( alg ) && hash_alg == PSA_ALG_ANY_HASH )
{
#if defined(KNOWN_SUPPORTED_HASH_ALG)
hash_alg = KNOWN_SUPPORTED_HASH_ALG;
alg ^= PSA_ALG_ANY_HASH ^ hash_alg;
#else
mbedtls_test_fail( "No hash algorithm for hash-and-sign testing",
__LINE__, __FILE__ );
return( 1 );
#endif
}
if( usage & PSA_KEY_USAGE_SIGN_HASH )
{
/* Some algorithms require the payload to have the size of
* the hash encoded in the algorithm. Use this input size
* even for algorithms that allow other input sizes. */
if( hash_alg != 0 )
payload_length = PSA_HASH_LENGTH( hash_alg );
PSA_ASSERT( psa_sign_hash( key, alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY_HASH )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN_HASH ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_verify_hash( key, alg,
payload, payload_length,
signature, signature_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_asymmetric_encryption_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char plaintext[256] = "Hello, world...";
unsigned char ciphertext[256] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = 16;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_asymmetric_encrypt( key, alg,
plaintext, plaintext_length,
NULL, 0,
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status =
psa_asymmetric_decrypt( key, alg,
ciphertext, ciphertext_length,
NULL, 0,
plaintext, sizeof( plaintext ),
&plaintext_length );
TEST_ASSERT( status == PSA_SUCCESS ||
( ( usage & PSA_KEY_USAGE_ENCRYPT ) == 0 &&
( status == PSA_ERROR_INVALID_ARGUMENT ||
status == PSA_ERROR_INVALID_PADDING ) ) );
}
return( 1 );
exit:
return( 0 );
}
int mbedtls_test_psa_setup_key_derivation_wrap(
psa_key_derivation_operation_t* operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
unsigned char* input1, size_t input1_length,
unsigned char* input2, size_t input2_length,
size_t capacity )
{
PSA_ASSERT( psa_key_derivation_setup( operation, alg ) );
if( PSA_ALG_IS_HKDF( alg ) )
{
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_SALT,
input1, input1_length ) );
PSA_ASSERT( psa_key_derivation_input_key( operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key ) );
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_INFO,
input2,
input2_length ) );
}
else if( PSA_ALG_IS_TLS12_PRF( alg ) ||
PSA_ALG_IS_TLS12_PSK_TO_MS( alg ) )
{
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_SEED,
input1, input1_length ) );
PSA_ASSERT( psa_key_derivation_input_key( operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key ) );
PSA_ASSERT( psa_key_derivation_input_bytes( operation,
PSA_KEY_DERIVATION_INPUT_LABEL,
input2, input2_length ) );
}
else
{
TEST_ASSERT( ! "Key derivation algorithm not supported" );
}
if( capacity != SIZE_MAX )
PSA_ASSERT( psa_key_derivation_set_capacity( operation, capacity ) );
return( 1 );
exit:
return( 0 );
}
static int exercise_key_derivation_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char input1[] = "Input 1";
size_t input1_length = sizeof( input1 );
unsigned char input2[] = "Input 2";
size_t input2_length = sizeof( input2 );
unsigned char output[1];
size_t capacity = sizeof( output );
if( usage & PSA_KEY_USAGE_DERIVE )
{
if( !mbedtls_test_psa_setup_key_derivation_wrap( &operation, key, alg,
input1, input1_length,
input2, input2_length,
capacity ) )
goto exit;
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output,
capacity ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
}
return( 1 );
exit:
return( 0 );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
psa_status_t mbedtls_test_psa_key_agreement_with_self(
psa_key_derivation_operation_t *operation,
mbedtls_svc_key_id_t key )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_derivation_key_agreement fails. This isn't fully satisfactory,
* but it's good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR( private_key_type );
public_key_length = PSA_EXPORT_KEY_OUTPUT_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( key, public_key, public_key_length,
&public_key_length ) );
status = psa_key_derivation_key_agreement(
operation, PSA_KEY_DERIVATION_INPUT_SECRET, key,
public_key, public_key_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( public_key );
return( status );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
psa_status_t mbedtls_test_psa_raw_key_agreement_with_self(
psa_algorithm_t alg,
mbedtls_svc_key_id_t key )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
uint8_t output[1024];
size_t output_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_derivation_key_agreement fails. This isn't fully satisfactory,
* but it's good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR( private_key_type );
public_key_length = PSA_EXPORT_KEY_OUTPUT_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( key,
public_key, public_key_length,
&public_key_length ) );
status = psa_raw_key_agreement( alg, key,
public_key, public_key_length,
output, sizeof( output ), &output_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( public_key );
return( status );
}
static int exercise_raw_key_agreement_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( mbedtls_test_psa_raw_key_agreement_with_self( alg, key ) );
}
ok = 1;
exit:
return( ok );
}
static int exercise_key_agreement_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char output[1];
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( psa_key_derivation_setup( &operation, alg ) );
PSA_ASSERT( mbedtls_test_psa_key_agreement_with_self( &operation, key ) );
PSA_ASSERT( psa_key_derivation_output_bytes( &operation,
output,
sizeof( output ) ) );
PSA_ASSERT( psa_key_derivation_abort( &operation ) );
}
ok = 1;
exit:
return( ok );
}
int mbedtls_test_psa_exported_key_sanity_check(
psa_key_type_t type, size_t bits,
uint8_t *exported, size_t exported_length )
{
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_EQUAL( exported_length, ( bits + 7 ) / 8 );
else
TEST_ASSERT( exported_length <= PSA_EXPORT_KEY_OUTPUT_SIZE( type, bits ) );
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
{
/* Check the parity bits. */
unsigned i;
for( i = 0; i < bits / 8; i++ )
{
unsigned bit_count = 0;
unsigned m;
for( m = 1; m <= 0x100; m <<= 1 )
{
if( exported[i] & m )
++bit_count;
}
TEST_ASSERT( bit_count % 2 != 0 );
}
}
else
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( type == PSA_KEY_TYPE_RSA_KEY_PAIR )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ), 0 );
TEST_EQUAL( p + len, end );
if( ! mbedtls_test_asn1_skip_integer( &p, end, 0, 0, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
/* Require d to be at least half the size of n. */
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits, 1 ) )
goto exit;
/* Require p and q to be at most half the size of n, rounded up. */
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEY_PAIR( type ) )
{
/* Just the secret value */
TEST_EQUAL( exported_length, PSA_BITS_TO_BYTES( bits ) );
}
else
#endif /* MBEDTLS_ECP_C */
if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
#if defined(MBEDTLS_RSA_C)
if( type == PSA_KEY_TYPE_RSA_PUBLIC_KEY )
{
size_t len;
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ),
0 );
TEST_EQUAL( p + len, end );
if( ! mbedtls_test_asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! mbedtls_test_asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY( type ) )
{
if( PSA_KEY_TYPE_ECC_GET_FAMILY( type ) == PSA_ECC_FAMILY_MONTGOMERY )
{
/* The representation of an ECC Montgomery public key is
* the raw compressed point */
TEST_EQUAL( p + PSA_BITS_TO_BYTES( bits ), end );
}
else
{
/* The representation of an ECC Weierstrass public key is:
* - The byte 0x04;
* - `x_P` as a `ceiling(m/8)`-byte string, big-endian;
* - `y_P` as a `ceiling(m/8)`-byte string, big-endian;
* - where m is the bit size associated with the curve.
*/
TEST_EQUAL( p + 1 + 2 * PSA_BITS_TO_BYTES( bits ), end );
TEST_EQUAL( p[0], 4 );
}
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[47];
mbedtls_snprintf( message, sizeof( message ),
"No sanity check for public key type=0x%08lx",
(unsigned long) type );
mbedtls_test_fail( message, __LINE__, __FILE__ );
(void) p;
(void) end;
return( 0 );
}
}
else
{
/* No sanity checks for other types */
}
return( 1 );
exit:
return( 0 );
}
static int exercise_export_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
if( ( usage & PSA_KEY_USAGE_EXPORT ) == 0 &&
! PSA_KEY_TYPE_IS_PUBLIC_KEY( psa_get_key_type( &attributes ) ) )
{
TEST_EQUAL( psa_export_key( key, exported,
exported_size, &exported_length ),
PSA_ERROR_NOT_PERMITTED );
ok = 1;
goto exit;
}
PSA_ASSERT( psa_export_key( key,
exported, exported_size,
&exported_length ) );
ok = mbedtls_test_psa_exported_key_sanity_check(
psa_get_key_type( &attributes ), psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( exported );
return( ok );
}
static int exercise_export_public_key( mbedtls_svc_key_id_t key )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t public_type;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( key, &attributes ) );
if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( psa_get_key_type( &attributes ) ) )
{
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
TEST_EQUAL( psa_export_public_key( key, exported,
exported_size, &exported_length ),
PSA_ERROR_INVALID_ARGUMENT );
ok = 1;
goto exit;
}
public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(
psa_get_key_type( &attributes ) );
exported_size = PSA_EXPORT_KEY_OUTPUT_SIZE( public_type,
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
PSA_ASSERT( psa_export_public_key( key,
exported, exported_size,
&exported_length ) );
ok = mbedtls_test_psa_exported_key_sanity_check(
public_type, psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_free( exported );
return( ok );
}
/** Do smoke tests on a key.
*
* Perform one of each operation indicated by \p alg (decrypt/encrypt,
* sign/verify, or derivation) that is permitted according to \p usage.
* \p usage and \p alg should correspond to the expected policy on the
* key.
*
* Export the key if permitted by \p usage, and check that the output
* looks sensible. If \p usage forbids export, check that
* \p psa_export_key correctly rejects the attempt. If the key is
* asymmetric, also check \p psa_export_public_key.
*
* If the key fails the tests, this function calls the test framework's
* `mbedtls_test_fail` function and returns false. Otherwise this function
* returns true. Therefore it should be used as follows:
* ```
* if( ! exercise_key( ... ) ) goto exit;
* ```
*
* \param key The key to exercise. It should be capable of performing
* \p alg.
* \param usage The usage flags to assume.
* \param alg The algorithm to exercise.
*
* \retval 0 The key failed the smoke tests.
* \retval 1 The key passed the smoke tests.
*/
int mbedtls_test_psa_exercise_key( mbedtls_svc_key_id_t key,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok;
if( ! check_key_attributes_sanity( key ) )
return( 0 );
if( alg == 0 )
ok = 1; /* If no algorihm, do nothing (used for raw data "keys"). */
else if( PSA_ALG_IS_MAC( alg ) )
ok = exercise_mac_key( key, usage, alg );
else if( PSA_ALG_IS_CIPHER( alg ) )
ok = exercise_cipher_key( key, usage, alg );
else if( PSA_ALG_IS_AEAD( alg ) )
ok = exercise_aead_key( key, usage, alg );
else if( PSA_ALG_IS_SIGN( alg ) )
ok = exercise_signature_key( key, usage, alg );
else if( PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
ok = exercise_asymmetric_encryption_key( key, usage, alg );
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
ok = exercise_key_derivation_key( key, usage, alg );
else if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
ok = exercise_raw_key_agreement_key( key, usage, alg );
else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
ok = exercise_key_agreement_key( key, usage, alg );
else
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"No code to exercise alg=0x%08lx",
(unsigned long) alg );
mbedtls_test_fail( message, __LINE__, __FILE__ );
ok = 0;
}
ok = ok && exercise_export_key( key, usage );
ok = ok && exercise_export_public_key( key );
return( ok );
}
psa_key_usage_t mbedtls_test_psa_usage_to_exercise( psa_key_type_t type,
psa_algorithm_t alg )
{
if( PSA_ALG_IS_MAC( alg ) || PSA_ALG_IS_SIGN( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_VERIFY_HASH :
PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH );
}
else if( PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) ||
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_ENCRYPT :
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
}
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) ||
PSA_ALG_IS_KEY_AGREEMENT( alg ) )
{
return( PSA_KEY_USAGE_DERIVE );
}
else
{
return( 0 );
}
}
static int test_operations_on_invalid_key( mbedtls_svc_key_id_t key )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;