Added integer divide by as separate function

Added 64bit integer divided by 32bit integer, with remainder
This commit is contained in:
Simon Butcher 2015-11-26 23:43:34 +00:00
parent ef43d41f67
commit ea303e3ece

View File

@ -18,13 +18,22 @@
* *
* This file is part of mbed TLS (https://tls.mbed.org) * This file is part of mbed TLS (https://tls.mbed.org)
*/ */
/* /*
* This MPI implementation is based on: * The following sources were referenced in the design of this Multi-precision
* Integer library:
* *
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf * [1] Handbook of Applied Cryptography - 1997
* http://www.stillhq.com/extracted/gnupg-api/mpi/ * Menezes, van Oorschot and Vanstone
* http://math.libtomcrypt.com/files/tommath.pdf *
*/ * [2] Multi-Precision Math
* Tom St Denis
* https://github.com/libtom/libtommath/blob/develop/tommath.pdf
*
* [3] GNU Multi-Precision Arithmetic Library
* https://gmplib.org/manual/index.html
*
*/
#if !defined(MBEDTLS_CONFIG_FILE) #if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h" #include "mbedtls/config.h"
@ -347,6 +356,24 @@ size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
return( 0 ); return( 0 );
} }
/*
* Count leading zero bits in a given integer
*/
static size_t mbedtls_clz( const mbedtls_mpi_uint x )
{
size_t j;
mbedtls_mpi_uint mask = 1 << (biL - 1);
for( j = 0; j < biL; j++ )
{
if( x & mask ) break;
mask >>= 1;
}
return j;
}
/* /*
* Return the number of bits * Return the number of bits
*/ */
@ -361,9 +388,7 @@ size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
if( X->p[i] != 0 ) if( X->p[i] != 0 )
break; break;
for( j = biL; j > 0; j-- ) j = biL - mbedtls_clz( X->p[i] );
if( ( ( X->p[i] >> ( j - 1 ) ) & 1 ) != 0 )
break;
return( ( i * biL ) + j ); return( ( i * biL ) + j );
} }
@ -1186,6 +1211,98 @@ int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint
return( mbedtls_mpi_mul_mpi( X, A, &_B ) ); return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
} }
/*
* Unsigned integer divide - 64bit dividend and 32bit divisor
*/
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r)
{
/*
* Check for overflow
*/
if(( 0 == d ) || ( u1 >= d ))
{
if (r != NULL) *r = (~0);
return (~0);
}
#if defined(MBEDTLS_HAVE_UDBL)
mbedtls_t_udbl dividend;
mbedtls_mpi_uint quotient;
dividend = (mbedtls_t_udbl) u1 << biL;
dividend |= (mbedtls_t_udbl) u0;
quotient = dividend / d;
if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
if( r != NULL )
*r = dividend - (quotient * d);
return (mbedtls_mpi_uint) quotient;
#else
const mbedtls_mpi_uint radix = 1 << biH;
mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
mbedtls_mpi_uint u0_msw, u0_lsw;
int s;
/*
* Algorithm D, Section 4.3.1 - The Art of Computer Programming
* Vol. 2 - Seminumerical Algorithms, Knuth
*/
/*
* Normalize the divisor, d, and dividend, u0, u1
*/
s = mbedtls_clz( d );
d = d << s;
u1 = u1 << s;
u1 |= (u0 >> (32 - s)) & ( (-s) >> 31);
u0 = u0 << s;
d1 = d >> biH;
d0 = d & 0xffff;
u0_msw = u0 >> biH;
u0_lsw = u0 & 0xffff;
/*
* Find the first quotient and remainder
*/
q1 = u1 / d1;
r0 = u1 - d1 * q1;
while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
{
q1 -= 1;
r0 += d1;
if ( r0 >= radix ) break;
}
rAX = (u1 * radix) + (u0_msw - q1 * d);
q0 = rAX / d1;
r0 = rAX - q0 * d1;
while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
{
q0 -= 1;
r0 += d1;
if ( r0 >= radix ) break;
}
if (r != NULL)
*r = (rAX * radix + u0_lsw - q0 * d) >> s;
quotient = q1 * radix + q0;
return quotient;
#endif
}
/* /*
* Division by mbedtls_mpi: A = Q * B + R (HAC 14.20) * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
*/ */
@ -1243,57 +1360,8 @@ int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, c
Z.p[i - t - 1] = ~0; Z.p[i - t - 1] = ~0;
else else
{ {
#if defined(MBEDTLS_HAVE_UDBL) Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
mbedtls_t_udbl r; Y.p[t], NULL);
r = (mbedtls_t_udbl) X.p[i] << biL;
r |= (mbedtls_t_udbl) X.p[i - 1];
r /= Y.p[t];
if( r > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
r = ( (mbedtls_t_udbl) 1 << biL ) - 1;
Z.p[i - t - 1] = (mbedtls_mpi_uint) r;
#else
/*
* __udiv_qrnnd_c, from gmp/longlong.h
*/
mbedtls_mpi_uint q0, q1, r0, r1;
mbedtls_mpi_uint d0, d1, d, m;
d = Y.p[t];
d0 = ( d << biH ) >> biH;
d1 = ( d >> biH );
q1 = X.p[i] / d1;
r1 = X.p[i] - d1 * q1;
r1 <<= biH;
r1 |= ( X.p[i - 1] >> biH );
m = q1 * d0;
if( r1 < m )
{
q1--, r1 += d;
while( r1 >= d && r1 < m )
q1--, r1 += d;
}
r1 -= m;
q0 = r1 / d1;
r0 = r1 - d1 * q0;
r0 <<= biH;
r0 |= ( X.p[i - 1] << biH ) >> biH;
m = q0 * d0;
if( r0 < m )
{
q0--, r0 += d;
while( r0 >= d && r0 < m )
q0--, r0 += d;
}
r0 -= m;
Z.p[i - t - 1] = ( q1 << biH ) | q0;
#endif /* MBEDTLS_HAVE_UDBL && !64-bit Apple with Clang 5.0 */
} }
Z.p[i - t - 1]++; Z.p[i - t - 1]++;