mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-11-22 11:45:42 +01:00
Bignum: Improve primality test for FIPS primes
The FIPS 186-4 RSA key generation prescribes lower failure probability in primality testing and this makes key generation slower. We enable the caller to decide between compliance/security and performance. This python script calculates the base two logarithm of the formulas in HAC Fact 4.48 and was used to determine the breakpoints and number of rounds: def mrpkt_log_2(k, t): if t <= k/9.0: return 3*math.log(k,2)/2+t-math.log(t,2)/2+4-2*math.sqrt(t*k) elif t <= k/4.0: c1 = math.log(7.0*k/20,2)-5*t c2 = math.log(1/7.0,2)+15*math.log(k,2)/4.0-k/2.0-2*t c3 = math.log(12*k,2)-k/4.0-3*t return max(c1, c2, c3) else: return math.log(1/7.0)+15*math.log(k,2)/4.0-k/2.0-2*t
This commit is contained in:
parent
7c025a9f50
commit
f301d23ceb
@ -726,7 +726,8 @@ int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B
|
||||
int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N );
|
||||
|
||||
/**
|
||||
* \brief Miller-Rabin primality test
|
||||
* \brief Miller-Rabin primality test with error probability of
|
||||
* 2<sup>-80</sup>
|
||||
*
|
||||
* \param X MPI to check
|
||||
* \param f_rng RNG function
|
||||
@ -747,7 +748,8 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
||||
* mbedtls_mpi_gen_prime().
|
||||
*/
|
||||
typedef enum {
|
||||
MBEDTLS_MPI_GEN_PRIME_FLAG_DH = 0x0001, /**< (X-1)/2 is prime too */
|
||||
MBEDTLS_MPI_GEN_PRIME_FLAG_DH = 0x0001, /**< (X-1)/2 is prime too */
|
||||
MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR = 0x0002, /**< lower error rate from 2<sup>-80</sup> to 2<sup>-128</sup> */
|
||||
} mbedtls_mpi_gen_prime_flag_t;
|
||||
|
||||
/**
|
||||
|
@ -2056,7 +2056,7 @@ cleanup:
|
||||
/*
|
||||
* Miller-Rabin pseudo-primality test (HAC 4.24)
|
||||
*/
|
||||
static int mpi_miller_rabin( const mbedtls_mpi *X,
|
||||
static int mpi_miller_rabin( const mbedtls_mpi *X, int flags,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
@ -2077,12 +2077,27 @@ static int mpi_miller_rabin( const mbedtls_mpi *X,
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
|
||||
|
||||
i = mbedtls_mpi_bitlen( X );
|
||||
/*
|
||||
* HAC, table 4.4
|
||||
*/
|
||||
n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
|
||||
( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
|
||||
( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
|
||||
|
||||
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
|
||||
{
|
||||
/*
|
||||
* 2^-80 error probability, number of rounds chosen per HAC, table 4.4
|
||||
*/
|
||||
n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
|
||||
( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
|
||||
( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* 2^-100 error probability, number of rounds computed based on HAC,
|
||||
* fact 4.48
|
||||
*/
|
||||
n = ( ( i >= 1450 ) ? 4 : ( i >= 1150 ) ? 5 :
|
||||
( i >= 1000 ) ? 6 : ( i >= 850 ) ? 7 :
|
||||
( i >= 750 ) ? 8 : ( i >= 500 ) ? 13 :
|
||||
( i >= 250 ) ? 28 : ( i >= 150 ) ? 40 : 51 );
|
||||
}
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
@ -2160,7 +2175,7 @@ cleanup:
|
||||
/*
|
||||
* Pseudo-primality test: small factors, then Miller-Rabin
|
||||
*/
|
||||
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
||||
int mpi_is_prime_internal( const mbedtls_mpi *X, int flags,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
@ -2186,15 +2201,25 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
||||
return( ret );
|
||||
}
|
||||
|
||||
return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
|
||||
return( mpi_miller_rabin( &XX, flags, f_rng, p_rng ) );
|
||||
}
|
||||
|
||||
/*
|
||||
* Pseudo-primality test, error probability 2^-80
|
||||
*/
|
||||
int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
return mpi_is_prime_internal( X, 0, f_rng, p_rng );
|
||||
}
|
||||
|
||||
/*
|
||||
* Prime number generation
|
||||
*
|
||||
* If flags is 0 and nbits is at least 1024, then the procedure
|
||||
* follows the RSA probably-prime generation method of FIPS 186-4.
|
||||
* NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
|
||||
* To generate an RSA key in a way recommended by FIPS 186-4, both primes must
|
||||
* be either 1024 bits or 1536 bits long, and flags must contain
|
||||
* MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
|
||||
*/
|
||||
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
@ -2231,7 +2256,7 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
|
||||
|
||||
if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
|
||||
{
|
||||
ret = mbedtls_mpi_is_prime( X, f_rng, p_rng );
|
||||
ret = mpi_is_prime_internal( X, flags, f_rng, p_rng );
|
||||
|
||||
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
||||
goto cleanup;
|
||||
@ -2264,8 +2289,10 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
|
||||
*/
|
||||
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
|
||||
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
|
||||
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
|
||||
( ret = mpi_miller_rabin( X, flags, f_rng, p_rng ) )
|
||||
== 0 &&
|
||||
( ret = mpi_miller_rabin( &Y, flags, f_rng, p_rng ) )
|
||||
== 0 )
|
||||
goto cleanup;
|
||||
|
||||
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
|
||||
|
Loading…
Reference in New Issue
Block a user