At that point, the timer might not yet be configured.
The timer is reset at the following occasions:
- when it is initially configured through
mbedtls_ssl_set_timer_cb() or
mbedtls_ssl_set_timer_cb_cx()
- when a session is reset in mbedtls_ssl_session_reset()
- when a handshake finishes via mbedtls_ssl_handshake_wrap()
This test case was only executed if the SHA-512 module was enabled and
MBEDTLS_ENTROPY_FORCE_SHA256 was not enabled, so "config.pl full"
didn't have a chance to reach it even if that enabled
MBEDTLS_PLATFORM_NV_SEED_ALT.
Now all it takes to enable this test is MBEDTLS_PLATFORM_NV_SEED_ALT
and its requirements, and the near-ubiquitous MD module.
Call mbedtls_entropy_free on test failure.
Restore the previous NV seed functions which the call to
mbedtls_platform_set_nv_seed() changed. This didn't break anything,
but only because the NV seed functions used for these tests happened
to work for the tests that got executed later in the .data file.
memset has undefined behavior when either pointer can be NULL, which
is the case when it's the result of malloc/calloc with a size of 0.
The memset calls here are useless anyway since they come immediately
after calloc.
All modules using restartable ECC operations support passing `NULL`
as the restart context as a means to not use the feature.
The restart contexts for ECDSA and ECP are nested, and when calling
restartable ECP operations from restartable ECDSA operations, the
address of the ECP restart context to use is calculated by adding
the to the address of the ECDSA restart context the offset the of
the ECP restart context.
If the ECP restart context happens to not reside at offset `0`, this
leads to a non-`NULL` pointer being passed to restartable ECP
operations from restartable ECDSA-operations; those ECP operations
will hence assume that the pointer points to a valid ECP restart
address and likely run into a segmentation fault when trying to
dereference the non-NULL but close-to-NULL address.
The problem doesn't arise currently because luckily the ECP restart
context has offset 0 within the ECDSA restart context, but we should
not rely on it.
This commit fixes the passage from restartable ECDSA to restartable ECP
operations by propagating NULL as the restart context pointer.
Apart from being fragile, the previous version could also lead to
NULL pointer dereference failures in ASanDbg builds which dereferenced
the ECDSA restart context even though it's not needed to calculate the
address of the offset'ed ECP restart context.
All modules using restartable ECC operations support passing `NULL`
as the restart context as a means to not use the feature.
The restart contexts for ECDSA and ECP are nested, and when calling
restartable ECP operations from restartable ECDSA operations, the
address of the ECP restart context to use is calculated by adding
the to the address of the ECDSA restart context the offset the of
the ECP restart context.
If the ECP restart context happens to not reside at offset `0`, this
leads to a non-`NULL` pointer being passed to restartable ECP
operations from restartable ECDSA-operations; those ECP operations
will hence assume that the pointer points to a valid ECP restart
address and likely run into a segmentation fault when trying to
dereference the non-NULL but close-to-NULL address.
The problem doesn't arise currently because luckily the ECP restart
context has offset 0 within the ECDSA restart context, but we should
not rely on it.
This commit fixes the passage from restartable ECDSA to restartable ECP
operations by propagating NULL as the restart context pointer.
Apart from being fragile, the previous version could also lead to
NULL pointer dereference failures in ASanDbg builds which dereferenced
the ECDSA restart context even though it's not needed to calculate the
address of the offset'ed ECP restart context.
This commit introduces the option MBEDTLS_SSL_CONF_SINGLE_HASH
which can be used to register a single supported signature hash
algorithm at compile time. It replaces the runtime configuration
API mbedtls_ssl_conf_sig_hashes() which allows to register a _list_
of supported signature hash algorithms.
In contrast to other options used to hardcode configuration options,
MBEDTLS_SSL_CONF_SINGLE_HASH isn't a numeric option, but instead it's
only relevant if it's defined or not. To actually set the single
supported hash algorithm that should be supported, numeric options
MBEDTLS_SSL_CONF_SINGLE_HASH_TLS_ID
MBEDTLS_SSL_CONF_SINGLE_HASH_MD_ID
must both be defined and provide the TLS ID and the Mbed TLS internal
ID and the chosen hash algorithm, respectively.
mbedtls_ssl_set_calc_verify_md() serves two purposes:
(a) It checks whether a hash algorithm is suitable to be used
in the CertificateVerify message.
(b) It updates the function callback pointing to the function that
computes handshake transcript for the CertificateVerify message
w.r.t. the chosen hash function.
Step (b) is only necessary when receiving the CertificateVerify
message, while writing the CertificateRequest only involves (a).
This commit modifies the writing code for the CertificateRequest
message to inline the check (a) and thereby avoiding the call to
mbedtls_ssl_calc_verify_md().
mbedtls_ssL_set_calc_verify_md() is used to select valid hashes when
writing the server's CertificateRequest message, as well as to verify
and act on the client's choice when reading its CertificateVerify
message.
If enabled at compile-time and configured via mbedtls_ssl_conf_sig_hashes()
the current code also offers SHA-1 in TLS 1.2. However, the SHA-1-based
handshake transcript in TLS 1.2 is different from the SHA-1 handshake
transcript used in TLS < 1.2, and we only maintain the latter
(through ssl_update_checksum_md5sha1()), but not the former.
Concretely, this will lead to CertificateVerify verification failure
if the client picks SHA-1 for the CertificateVerify message in a TLS 1.2
handshake.
This commit removes SHA-1 from the list of supported hashes in
the CertificateRequest message, and adapts two tests in ssl-opt.sh
which expect SHA-1 to be listed in the CertificateRequest message.
mbedtls_ssl_set_calc_verify_md() is only called from places
where it has been checked that TLS 1.2 is being used. The
corresponding compile-time and runtime guards checking the
version in mbedtls_ssl_set_calc_verify_md() are therefore
redundant and can be removed.
The previous code writes the content (the EC curve list) of the extension
before writing the extension length field at the beginning, which is common
in the library in places where we don't know the length upfront. Here,
however, we do traverse the EC curve list upfront to infer its length
and do the bounds check, so we can reorder the code to write the extension
linearly and hence improve readability.
This commit introduces the option MBEDTLS_SSL_CONF_SINGLE_EC
which can be used to register a single supported elliptic curve
at compile time. It replaces the runtime configuration API
mbedtls_ssl_conf_curves() which allows to register a _list_
of supported elliptic curves.
In contrast to other options used to hardcode configuration options,
MBEDTLS_SSL_CONF_SINGLE_EC isn't a numeric option, but instead it's
only relevant if it's defined or not. To actually set the single
elliptic curve that should be supported, numeric options
MBEDTLS_SSL_CONF_SINGLE_EC_TLS_ID
MBEDTLS_SSL_CONF_SINGLE_EC_GRP_ID
must both be defined and provide the TLS ID and the Mbed TLS internal
ID and the chosen curve, respectively.
For both client/server the EC curve list is assumed not to be NULL:
- On the client-side, it's assumed when writing the
supported elliptic curve extension:
c54ee936d7/library/ssl_cli.c (L316)
- On the server, it is assumed when searching for a
suitable curve for the ECDHE exchange:
c54ee936d7/library/ssl_srv.c (L3200)
It is therefore not necessary to check this in mbedtls_ssl_check_curve().
ssl_write_supported_elliptic_curves_ext() is guarded by
```
#if defined(MBEDTLS_ECDH_C) || defined(MBEDTLS_ECDSA_C) || \
defined(MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED)
```
each of which implies (by check_config.h) that MBEDTLS_ECP_C
is enabled.
The fields
- mbedtls_ssl_handshake_params::max_major_ver,
- mbedtls_ssl_handshake_params::max_minor_ver
are used only for server-side RSA-based key exchanges
can be removed otherwise.
Reasons:
- If the transport type is fixed at compile-time,
mbedtls_ssl_read_version() and mbedtls_ssl_write_version()
are called with a compile-time determined `transport`
parameter, so the transport-type branch in their body
can be eliminated at compile-time.
- mbedtls_ssl_read_version() is called with addresses of
local variables, which so far need to be put on the stack
to be addressable. Inlining the call allows to read directly
into the registers holding these local variables.
This saves 60 bytes w.r.t. the measurement performed by
> ./scripts/baremetal.sh --rom --gcc
If the minor/major version is enforced at compile-time, the `major_ver`
and `minor_ver` fields in `mbedtls_ssl_context` are redundant and can
be removed.
This commit introduces the numeric compile-time constants
- MBEDTLS_SSL_CONF_MIN_MINOR_VER
- MBEDTLS_SSL_CONF_MAX_MINOR_VER
- MBEDTLS_SSL_CONF_MIN_MAJOR_VER
- MBEDTLS_SSL_CONF_MAX_MAJOR_VER
which, when defined, overwrite the runtime configurable fields
mbedtls_ssl_config::min_major_ver etc. in the SSL configuration.
As for the preceding case of the ExtendedMasterSecret configuration,
it also introduces and puts to use getter functions for these variables
which evaluate to either a field access or the macro value, maintaining
readability of the code.
The runtime configuration API mbedtls_ssl_conf_{min|max}_version()
is kept for now but has no effect if MBEDTLS_SSL_CONF_XXX are set.
This is likely to be changed in a later commit but deliberately omitted
for now, in order to be able to study code-size benefits earlier in the
process.
* origin/pr/2744:
Fix parsing issue when int parameter is in base 16
Refactor receive_uint32()
Refactor get_byte function
Make the script portable to both pythons
Update the test encoding to support python3
update the test script
Fix error `ValueError: invalid literal for int() with base 10:` that
is caused when a parameter is given in base 16. Use relevant base
when calling `int()` function.