As a result, the copyright of contributors other than Arm is now
acknowledged, and the years of publishing are no longer tracked in the
source files.
Also remove the now-redundant lines declaring that the files are part of
MbedTLS.
This commit was generated using the following script:
# ========================
#!/bin/sh
# Find files
find '(' -path './.git' -o -path './3rdparty' ')' -prune -o -type f -print | xargs sed -bi '
# Replace copyright attribution line
s/Copyright.*Arm.*/Copyright The Mbed TLS Contributors/I
# Remove redundant declaration and the preceding line
$!N
/This file is part of Mbed TLS/Id
P
D
'
# ========================
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
Rename PSA_DH_GROUP_xxx to PSA_DH_FAMILY_xxx, also rename
PSA_KEY_TYPE_GET_GROUP to PSA_KEY_TYPE_DH_GET_FAMILY and rename
psa_dh_group_t to psa_dh_family_t. Old defines are provided in
include/crypto_compat.h for backward compatibility.
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
Rename PSA_ECC_CURVE_xxx to PSA_ECC_FAMILY_xxx, also rename
PSA_KEY_TYPE_GET_CURVE to PSA_KEY_TYPE_ECC_GET_FAMILY and rename
psa_ecc_curve_t to psa_ecc_family_t. Old defines are provided in
include/crypto_compat.h for backward compatibility.
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
On dual world platforms, we want to run the PK module (pk.c) on the NS
side so TLS can use PSA APIs via the PK interface. PK currently has a
hard dependency on mbedtls_ecc_group_to_psa() which is declared in
crypto_extra.h, but only defined in psa_crypto.c, which is only built
for the S side.
Without this change, dual world platforms get error messages like the
following.
[Error] @0,0: L6218E: Undefined symbol mbedtls_ecc_group_to_psa (referred from BUILD/LPC55S69_NS/ARM/mbed-os/features/mbedtls/mbed-crypto/src/pk.o)
Make mbedtls_ecc_group_to_psa() inline within crypto_extra.h so that it
is available to both NS and S world code.
Fixes#3300
Signed-off-by: Darryl Green <darryl.green@arm.com>
Signed-off-by: Jaeden Amero <jaeden.amero@arm.com>
Change the encoding of key types, EC curve families and DH group
families to make the low-order bit a parity bit (with even parity).
This ensures that distinct key type values always have a Hamming
distance of at least 2, which makes it easier for implementations to
resist single bit flips.
All key types now have an encoding on 32 bits where the bottom 16 bits
are zero. Change to using 16 bits only.
Keep 32 bits for key types in storage, but move the significant
half-word from the top to the bottom.
Likewise, change EC curve and DH group families from 32 bits out of
which the top 8 and bottom 16 bits are zero, to 8 bits only.
Reorder psa_core_key_attributes_t to avoid padding.
Key types are now encoded through a category in the upper 4 bits (bits
28-31) and a type-within-category in the next 11 bits (bits 17-27),
with bit 16 unused and bits 0-15 only used for the EC curve or DH
group.
For symmetric keys, bits 20-22 encode the block size (0x0=stream,
0x3=8B, 0x4=16B).
Move backward compatibility aliases to a separate header. Reserve
crypto_extra.h for implementation-specific extensions that we intend
to keep supporting.
This is better documentation for users. New users should simply ignore
backward compatibility aliases, and old users can look at
crypto_compat.h to see what is deprecated without bothering about new
features appearing in crypto_extra.h.
This facilitates maintenance because scripts such as
generate_psa_constants that want to ignore backward compability
aliases can simply exclude crypto_compat.h from their parsing.
When registering a key in a secure element, go through the transaction
mechanism. This makes the code simpler, at the expense of a few extra
storage operations. Given that registering a key is typically very
rare over the lifetime of a device, this is an acceptable loss.
Drivers must now have a p_validate_slot_number method, otherwise
registering a key is not possible. This reduces the risk that due to a
mistake during the integration of a device, an application might claim
a slot in a way that is not supported by the driver.
Avoid compiler errors when MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER
is set by using the application ID type.
[Error] psa_crypto_slot_management.c@175,9: used type 'psa_key_id_t' (aka 'psa_key_file_id_t') where arithmetic or pointer type is required
Register an existing key in a secure element.
Minimal implementation that doesn't call any driver method and just
lets the application declare whatever it wants.
Test the behavior of the getter/setter functions.
Test that psa_get_key_slot_number() reports a slot number for a key in
a secure element, and doesn't report a slot number for a key that is
not in a secure element.
Test that psa_get_key_slot_number() reports the correct slot number
for a key in a secure element.
Add a slot_number field to psa_key_attributes_t and getter/setter
functions. Since slot numbers can have the value 0, indicate the
presence of the field via a separate flag.
In psa_get_key_attributes(), report the slot number if the key is in a
secure element.
When creating a key, for now, applications cannot choose a slot
number. A subsequent commit will add this capability in the secure
element HAL.
Move the "core attributes" to a substructure of psa_key_attribute_t.
The motivation is to be able to use the new structure
psa_core_key_attributes_t internally.
This change affects the psa_key_derivation_s structure. With the buffer
removed from the union, it is empty if MBEDTLS_MD_C is not defined.
We can avoid undefined behaviour by adding a new dummy field that is
always present or make the whole union conditional on MBEDTLS_MD_C.
In this latter case the initialiser macro has to depend on MBEDTLS_MD_C
as well. Furthermore the first structure would be either
psa_hkdf_key_derivation_t or psa_tls12_prf_key_derivation_t both of
which are very deep and would make the initialisation macro difficult
to maintain, therefore we go with the first option.
We want to make the PRF context structure depend on this flag, but
crypto_extra.h is included after crypto_struct.h and having the
option at its original place would not affect crypto_struct.h.
Add the compile time option PSA_PRE_1_0_KEY_DERIVATION. If this is not
turned on, then the function `psa_key_derivation()` is removed.
Most of the tests regarding key derivation haven't been adapted to the
new API yet and some of them have only been adapted partially. When this
new option is turned off, the tests using the old API and test cases
using the old API of partially adapted tests are skipped.
The sole purpose of this option is to make the transition to the new API
smoother. Once the transition is complete it can and should be removed
along with the old API and its implementation.
Remove the key creation functions from before the attribute-based API,
i.e. the key creation functions that worked by allocating a slot, then
setting metadata through the handle and finally creating key material.
generate_key is a more classical name. The longer name was only
introduced to avoid confusion with getting a key from a generator,
which is key derivation, but we no longer use the generator
terminology so this reason no longer applies.
perl -i -pe 's/psa_generate_random_key/psa_generate_key/g' $(git ls-files)
“Tampering detected” was misleading because in the real world it can
also arise due to a software bug. “Corruption detected” is neutral and
more precisely reflects what can trigger the error.
perl -i -pe 's/PSA_ERROR_TAMPERING_DETECTED/PSA_ERROR_CORRUPTION_DETECTED/gi' $(git ls-files)
Move DSA-related key types and algorithms to the
implementation-specific header file. Not that we actually implement
DSA, but with domain parameters, we should be able to.
Parametrize finite-field Diffie-Hellman key types with a DH group
identifier, in the same way elliptic curve keys are parametrized with
an EC curve identifier.
Define the DH groups from the TLS registry (these are the groups from
RFC 7919).
Replicate the macro definitions and the metadata tests from elliptic
curve identifiers to DH group identifiers.
Define PSA_DH_GROUP_CUSTOM as an implementation-specific extension for
which domain parameters are used to specify the group.
Move psa_get_key_domain_parameters() and
psa_set_key_domain_parameters() out of the official API and declare
them to be implementation-specific extensions.
Expand the documentation of psa_set_key_domain_parameters() a bit to
explain how domain parameters are used.
Remove all mentions of domain parameters from the documentation of API
functions. This leaves DH and DSA effectively unusable.
Generators are mostly about key derivation (currently: only about key
derivation). "Generator" is not a commonly used term in cryptography.
So favor "derivation" as terminology.
This commit updates the function descriptions.
Generators are mostly about key derivation (currently: only about key
derivation). "Generator" is not a commonly used term in cryptography.
So favor "derivation" as terminology. Call a generator a key
derivation operation structure, since it behaves like other multipart
operation structures. Furthermore, the function names are not fully
consistent.
In this commit, I rename the functions to consistently have the prefix
"psa_key_derivation_". I used the following command:
perl -i -pe '%t = (
psa_crypto_generator_t => "psa_key_derivation_operation_t",
psa_crypto_generator_init => "psa_key_derivation_init",
psa_key_derivation_setup => "psa_key_derivation_setup",
psa_key_derivation_input_key => "psa_key_derivation_input_key",
psa_key_derivation_input_bytes => "psa_key_derivation_input_bytes",
psa_key_agreement => "psa_key_derivation_key_agreement",
psa_set_generator_capacity => "psa_key_derivation_set_capacity",
psa_get_generator_capacity => "psa_key_derivation_get_capacity",
psa_generator_read => "psa_key_derivation_output_bytes",
psa_generate_derived_key => "psa_key_derivation_output_key",
psa_generator_abort => "psa_key_derivation_abort",
PSA_CRYPTO_GENERATOR_INIT => "PSA_KEY_DERIVATION_OPERATION_INIT",
PSA_GENERATOR_UNBRIDLED_CAPACITY => "PSA_KEY_DERIVATION_UNLIMITED_CAPACITY",
); s/\b(@{[join("|", keys %t)]})\b/$t{$1}/ge' $(git ls-files)
Types and functions that are not used in the attribute-based key
creation API are now implementation-specific extensions, kept around
until we finish transitioning to the new API.
This commit starts a migration to a new interface for key creation.
Today, the application allocates a handle, then fills its metadata,
and finally injects key material. The new interface fills metadata
into a temporary structure, and a handle is allocated at the same time
it gets filled with both metadata and key material.
This commit was obtained by moving the declaration of the old-style
functions to crypto_extra.h and renaming them with the to_handle
suffix, adding declarations for the new-style functions in crypto.h
under their new name, and running
perl -i -pe 's/\bpsa_(import|copy|generator_import|generate)_key\b/$&_to_handle/g' library/*.c tests/suites/*.function programs/psa/*.c
perl -i -pe 's/\bpsa_get_key_lifetime\b/$&_from_handle/g' library/*.c tests/suites/*.function programs/psa/*.c
Many functions that are specific to the old interface, and which will
not remain under the same name with the new interface, are still in
crypto.h for now.
All functional tests should still pass. The documentation may have
some broken links.
Merge the Mbed Crypto development branch a little after
mbedcrypto-1.0.0 into the PSA Crypto API 1.0 beta branch a little
after beta 2.
Summary of merge conflicts:
* Some features (psa_copy_key, public key format without
SubjectPublicKeyInfo wrapping) went into both sides, but with a few
improvements on the implementation side. For those, take the
implementation side.
* The key derivation API changed considerably on the API side. This
merge commit generally goes with the updated API except in the tests
where it keeps some aspects of the implementation.
Due to the divergence between the two branches on key derivation and
key agreement, test_suite_psa_crypto does not compile. This will be
resolved in subsequent commits.