So far there was no test ensuring that the flags passed to the vrfy callback
are correct (ie the flags for the current certificate, not including those of
the parent).
Actual tests case making use of that test function will be added in the next
commit.
md() already checks for md_info == NULL. Also, in the future it might also
return other errors (eg hardware errors if acceleration is used), so it make
more sense to check its return value than to check for NULL ourselves and then
assume no other error can occur.
Also, currently, md_info == NULL can never happen except if the MD and OID modules
get out of sync, or if the user messes with members of the x509_crt structure
directly.
This commit does not change the current behaviour, which is to treat MD errors
the same way as a bad signature or no trusted root.
The fact that self-signed end-entity certs can be explicitly trusted by
putting them in the CA list even if they don't have the CA bit was not
documented though it's intentional, and tested by "Certificate verification #73
(selfsigned trusted without CA bit)" in test_suite_x509parse.data
It is unclear to me whether the restriction that explicitly trusted end-entity
certs must be self-signed is a good one. However, it seems intentional as it is
tested in tests #42 and #43, so I'm not touching it for now.
With cmake, CFLAGS has to be set when invoking cmake, not make (which totally
ignores the value of CFLAGS when it runs and only keeps the one from cmake).
Also, in that case the flags were either redundant (-Werror etc) or wrong
(-std=c99 -pedantic) as some parts of the library will not build with
-pedantic (see the other -pedantic tests, which are correct, for what needs to
be disabled).
This is step 1 of a plan to get rid once and for all of missing depends_on in
the X509 test suite (step 2 will be RSA/ECDSA, and step 0 was curves.pl).
We have code to skip them but didn't have explicit tests ensuring they are
(the corresponding branch was never taken).
While at it, remove extra copy of the chain in server10*.crt, which was
duplicated for no reason.
This shows inconsistencies in how flags are handled when callback fails:
- sometimes the flags set by the callback are transmitted, sometimes not
- when the cert if not trusted, sometimes BADCERT_NOT_TRUSTED is set,
sometimes not
This adds coverage for 9 lines and 9 branches. Now all lines related to
callback failure are covered.
Now all checks related to profile are covered in:
- verify_with_profile()
- verify_child()
- verify_top()
(that's 10 lines that were previously not covered)
Leaving aside profile enforcement in CRLs for now, as the focus is on
preparing to refactor cert verification.
Previously flags was left to whatever value it had before. It's cleaner to
make sure it has a definite value, and all bits set looks like the safest way
for when it went very wrong.
The change in the truncated HMAC extension aligns Mbed TLS with the
standard, but breaks interoperability with previous versions. Indicate
this in the ChangeLog, as well as how to restore the old behavior.
Add mbedTLS.vcxproj to the VS2010 application template so that the next
time we auto-generate the application project files, the
LinkLibraryDependencies for mbedTLS.vcxproj are maintained.
Fixes#1347
MD2, MD4, MD5, DES and SHA-1 are considered weak and their use
constitutes a security risk. If possible, we recommend avoiding
dependencies on them, and considering stronger message digests and
ciphers instead.
This change fixes a problem in the tests pk_rsa_alt() and
pk_rsa_overflow() from test_suite_pk.function that would cause a
segmentation fault. The problem is that these tests are only designed
to run in computers where the sizeof(size_t) > sizeof(unsigned int).
On x32, pointers are only 4-bytes wide and need to be loaded using the "movl"
instruction instead of "movq" to avoid loading garbage into the register.
The MULADDC routines for x86-64 are adjusted to work on x32 as well by getting
gcc to load all the registers for us in advance (and storing them later) by
using better register constraints. The b, c, D and S constraints correspond to
the rbx, rcx, rdi and rsi registers respectively.
On x32 systems, pointers are 4-bytes wide and are therefore stored in %e?x
registers (instead of %r?x registers). These registers must be accessed using
"addl" instead of "addq", however the GNU assembler will acccept the generic
"add" instruction and determine the correct opcode based on the registers
passed to it.