Steps:
1. sed -i 's/\bmemset(\([^)]\)/mbedtls_platform_memset(\1/g' library/*.c tinycrypt/*.c include/mbedtls/*.h scripts/data_files/*.fmt
2. Manually edit library/platform_util.c to revert to memset() in the
implementations of mbedtls_platform_memset() and mbedtls_platform_memcpy()
3. egrep -n '\<memset\>' library/*.c include/mbedtls/*.h tinycrypt/*.c
The remaining occurrences are in three categories:
a. From point 2 above.
b. In comments.
c. In the initialisation of memset_func, to be changed in a future commit.
As has been previously done for ciphersuites, this commit introduces
a zero-cost abstraction layer around the type
mbedtls_md_info const *
whose valid values represent implementations of message digest algorithms.
Access to a particular digest implementation can be requested by name or
digest ID through the API mbedtls_md_info_from_xxx(), which either returns
a valid implementation or NULL, representing failure.
This commit replaces such uses of `mbedtls_md_info const *` by an abstract
type `mbedtls_md_handle_t` whose valid values represent digest implementations,
and which has a designated invalid value MBEDTLS_MD_INVALID_HANDLE.
The purpose of this abstraction layer is to pave the way for builds which
support precisely one digest algorithm. In this case, mbedtls_md_handle_t
can be implemented as a two-valued type, with one value representing the
invalid handle, and the unique valid value representing the unique enabled
digest.
- The validity of the input and output parameters is checked by
parameter validation.
- A PRNG is required in public mode only (even though it's also
recommended in private mode), so move the check to the
corresponding branch.
The code assumed that `int x = - (unsigned) u` with 0 <= u < INT_MAX
sets `x` to the negative of u, but actually this calculates
(UINT_MAX - u) and then converts this value to int, which overflows.
Cast to int before applying the unary minus operator to guarantee the
desired behavior.
The code was making two unsequenced reads from volatile locations.
This is undefined behavior. It was probably harmless because we didn't
care in what order the reads happened and the reads were from ordinary
memory, but UB is UB and IAR8 complained.
Get rid of the variable p. This makes it more apparent where the code
accesses the buffer at an offset whose value is sensitive.
No intended behavior change in this commit.
Rather than doing the quadratic-time constant-memory-trace on the
whole working buffer, do it on the section of the buffer where the
data to copy has to lie, which can be significantly smaller if the
output buffer is significantly smaller than the working buffer, e.g.
for TLS RSA ciphersuites (48 bytes vs MBEDTLS_MPI_MAX_SIZE).
In mbedtls_rsa_rsaes_pkcs1_v15_decrypt, use size_greater_than (which
is based on bitwise operations) instead of the < operator to compare
sizes when the values being compared must not leak. Some compilers
compile < to a branch at least under some circumstances (observed with
gcc 5.4 for arm-gnueabi -O9 on a toy program).
Replace memmove(to, to + offset, length) by a functionally equivalent
function that strives to make the same memory access patterns
regardless of the value of length. This fixes an information leak
through timing (especially timing of memory accesses via cache probes)
that leads to a Bleichenbacher-style attack on PKCS#1 v1.5 decryption
using the plaintext length as the observable.
mbedtls_rsa_rsaes_pkcs1_v15_decrypt takes care not to reveal whether
the padding is valid or not, even through timing or memory access
patterns. This is a defense against an attack published by
Bleichenbacher. The attacker can also obtain the same information by
observing the length of the plaintext. The current implementation
leaks the length of the plaintext through timing and memory access
patterns.
This commit is a first step towards fixing this leak. It reduces the
leak to a single memmove call inside the working buffer.
Make the function more robust by taking an arbitrary zero/nonzero
argument instead of insisting on zero/all-bits-one. Update and fix its
documentation.
mbedtls_rsa_rsaes_pkcs1_v15_decrypt took care of calculating the
padding length without leaking the amount of padding or the validity
of the padding. However it then skipped the copying of the data if the
padding was invalid, which could allow an adversary to find out
whether the padding was valid through precise timing measurements,
especially if for a local attacker who could observe memory access via
cache timings.
Avoid this leak by always copying from the decryption buffer to the
output buffer, even when the padding is invalid. With invalid padding,
copy the same amount of data as what is expected on valid padding: the
minimum valid padding size if this fits in the output buffer,
otherwise the output buffer size. To avoid leaking payload data from
an unsuccessful decryption, zero the decryption buffer before copying
if the padding was invalid.
It should be valid to RSASSA-PSS sign a SHA-512 hash with a 1024-bit or
1032-bit RSA key, but with the salt size being always equal to the hash
size, this isn't possible: the key is too small.
To enable use of hashes that are relatively large compared to the key
size, allow reducing the salt size to no less than the hash size minus 2
bytes. We don't allow salt sizes smaller than the hash size minus 2
bytes because that too significantly changes the security guarantees the
library provides compared to the previous implementation which always
used a salt size equal to the hash size. The new calculated salt size
remains compliant with FIPS 186-4.
We also need to update the "hash too large" test, since we now reduce
the salt size when certain key sizes are used. We used to not support
1024-bit keys with SHA-512, but now we support this by reducing the salt
size to 62. Update the "hash too large" test to use a 1016-bit RSA key
with SHA-512, which still has too large of a hash because we will not
reduce the salt size further than 2 bytes shorter than the hash size.
The RSA private key used for the test was generated using "openssl
genrsa 1016" using OpenSSL 1.1.1-pre8.
$ openssl genrsa 1016
Generating RSA private key, 1016 bit long modulus (2 primes)
..............++++++
....++++++
e is 65537 (0x010001)
-----BEGIN RSA PRIVATE KEY-----
MIICVwIBAAKBgACu54dKTbLxUQBEQF2ynxTfDze7z2H8vMmUo9McqvhYp0zI8qQK
yanOeqmgaA9iz52NS4JxFFM/2/hvFvyd/ly/hX2GE1UZpGEf/FnLdHOGFhmnjj7D
FHFegEz/gtbzLp9X3fOQVjYpiDvTT0Do20EyCbFRzul9gXpdZcfaVHNLAgMBAAEC
gYAAiWht2ksmnP01B2nF8tGV1RQghhUL90Hd4D/AWFJdX1C4O1qc07jRBd1KLDH0
fH19WocLCImeSZooGCZn+jveTuaEH14w6I0EfnpKDcpWVAoIP6I8eSdAttrnTyTn
Y7VgPrcobyq4WkCVCD/jLUbn97CneF7EHNspXGMTvorMeQJADjy2hF5SginhnPsk
YR5oWawc6n01mStuLnloI8Uq/6A0AOQoMPkGl/CESZw+NYfe/BnnSeckM917cMKL
DIKAtwJADEj55Frjj9tKUUO+N9eaEM1PH5eC7yakhIpESccs/XEsaDUIGHNjhctK
mrbbWu+OlsVRA5z8yJFYIa7gae1mDQJABjtQ8JOQreTDGkFbZR84MbgCWClCIq89
5R3DFZUiAw4OdS1o4ja+Shc+8DFxkWDNm6+C63g/Amy5sVuWHX2p9QI/a69Cxmns
TxHoXm1w9Azublk7N7DgB26yqxlTfWJo+ysOFmLEk47g0ekoCwLPxkwXlYIEoad2
JqPh418DwYExAkACcqrd9+rfxtrbCbTXHEizW7aHR+fVOr9lpXXDEZTlDJ57sRkS
SpjXbAmylqQuKLqH8h/72RbiP36kEm5ptmw2
-----END RSA PRIVATE KEY-----
This commit removes all the static occurrencies of the function
mbedtls_zeroize() in each of the individual .c modules. Instead the
function has been moved to utils.h that is included in each of the
modules.
The specification requires that P and Q are not too close. The specification
also requires that you generate a P and stick with it, generating new Qs until
you have found a pair that works. In practice, it turns out that sometimes a
particular P results in it being very unlikely a Q can be found matching all
the constraints. So we keep the original behavior where a new P and Q are
generated every round.
Attacks against RSA exist for small D. [Wiener] established this for
D < N^0.25. [Boneh] suggests the bound should be N^0.5.
Multiple possible values of D might exist for the same set of E, P, Q. The
attack works when there exists any possible D that is small. To make sure that
the generated key is not susceptible to attack, we need to make sure we have
found the smallest possible D, and then check that D is big enough. The
Carmichael function λ of p*q is lcm(p-1, q-1), so we can apply Carmichael's
theorem to show that D = d mod λ(n) is the smallest.
[Wiener] Michael J. Wiener, "Cryptanalysis of Short RSA Secret Exponents"
[Boneh] Dan Boneh and Glenn Durfee, "Cryptanalysis of RSA with Private Key d Less than N^0.292"
Conflict resolution:
* ChangeLog
* tests/data_files/Makefile: concurrent additions, order irrelevant
* tests/data_files/test-ca.opensslconf: concurrent additions, order irrelevant
* tests/scripts/all.sh: one comment change conflicted with a code
addition. In addition some of the additions in the
iotssl-1381-x509-verify-refactor-restricted branch need support for
keep-going mode, this will be added in a subsequent commit.
Found by running:
CC=clang cmake -D CMAKE_BUILD_TYPE="Check"
tests/scripts/depend-pkalgs.pl
(Also tested with same command but CC=gcc)
Another PR will address improving all.sh and/or the depend-xxx.pl scripts
themselves to catch this kind of thing.
The _ext suffix suggests "new arguments", but the new functions have
the same arguments. Use _ret instead, to convey that the difference is
that the new functions return a value.
Conflict resolution:
* ChangeLog: put the new entries in their rightful place.
* library/x509write_crt.c: the change in development was whitespace
only, so use the one from the iotssl-1251 feature branch.
This commit adds some explicit downcasts from `size_t` to `uint8_t` in
the RSASSA signature encoding function `rsa_rsassa_pkcs1_v15_encode`.
The truncation is safe as it has been checked beforehand that the
respective values are in the range of a `uint8_t`.
1) `mbedtls_rsa_import_raw` used an uninitialized return
value when it was called without any input parameters.
While not sensible, this is allowed and should be a
succeeding no-op.
2) The MPI test for prime generation missed a return value
check for a call to `mbedtls_mpi_shift_r`. This is neither
critical nor new but should be fixed.
3) Both the RSA keygeneration example program and the
RSA test suites contained code initializing an RSA context
after a potentially failing call to CTR DRBG initialization,
leaving the corresponding RSA context free call in the
cleanup section of the respective function orphaned.
While this defect existed before, Coverity picked up on
it again because of newly introduced MPI's that were
also wrongly initialized only after the call to CTR DRBG
init. The commit fixes both the old and the new issue
by moving the initializtion of both the RSA context and
all MPI's prior to the first potentially failing call.
The function `mbedtls_rsa_complete` is supposed to guarantee that
RSA operations will complete without failure. In contrast, it does
not ensure consistency of parameters, which is the task of the
checking functions `rsa_check_pubkey` and `rsa_check_privkey`.
Previously, the maximum allowed size of the RSA modulus was checked
in `mbedtls_rsa_check_pubkey`. However, exceeding this size would lead
to failure of some RSA operations, hence this check belongs to
`mbedtls_rsa_complete` rather than `mbedtls_rsa_check_pubkey`.
This commit moves it accordingly.
Remove a check introduced in the previous buffer overflow fix with keys of
size 8N+1 which the subsequent fix for buffer start calculations made
redundant.
Added a changelog entry for the buffer start calculation fix.
For a key of size 8N+1, check that the first byte after applying the
public key operation is 0 (it could have been 1 instead). The code was
incorrectly doing a no-op check instead, which led to invalid
signatures being accepted. Not a security flaw, since you would need the
private key to craft such an invalid signature, but a bug nonetheless.