For unit tests and sample programs, CFLAGS=-m32 is enough to get a
32-bit build, because these programs are all compiled directly
from *.c to the executable in one shot. But with makefile rules that
first build object files and then link them, LDFLAGS=-m32 is also
needed.
When running make with parallelization, running both "clean" and "lib"
with a single make invocation can lead to each target building in
parallel. It's bad if lib is partially done building something, and then
clean deletes what was built. This can lead to errors later on in the
lib target.
$ make -j9 clean lib
CC aes.c
CC aesni.c
CC arc4.c
CC aria.c
CC asn1parse.c
CC ./library/error.c
CC ./library/version.c
CC ./library/version_features.c
AR libmbedcrypto.a
ar: aes.o: No such file or directory
Makefile:120: recipe for target 'libmbedcrypto.a' failed
make[2]: *** [libmbedcrypto.a] Error 1
Makefile:152: recipe for target 'libmbedcrypto.a' failed
make[1]: *** [libmbedcrypto.a] Error 2
Makefile:19: recipe for target 'lib' failed
make: *** [lib] Error 2
make: *** Waiting for unfinished jobs....
To avoid this sort of trouble, always invoke clean by itself without
other targets throughout the library. Don't run clean in parallel with
other rules. The only place where clean was run in parallel with other
targets was in list-symbols.sh.
We've observed that sometimes check-names.sh exits unexpectedly with
status 2 and no error message. The failure is not reproducible. This
commits makes the script print a trace if it exits unexpectedly.
When doing ABI/API checking, its useful to have a list of all the
identifiers that are defined in the internal header files, as we
do not promise compatibility for them. This option allows for a
simple method of getting them for use with the ABI checking script.
Run ssl-opt.sh on x86_32 with ASan. This may detect bugs that only
show up on 32-bit platforms, for example due to size_t overflow.
For this component, turn off some memory management features that are
not useful, potentially slow, and may reduce ASan's effectiveness at
catching buffer overflows.
* origin/pr/2471:
check-files.py: readability improvement in permission check
check-files.py: use class fields for class-wide constants
check-files.py: clean up class structure
check-files.py: document some classes and methods
Line issue trackers are conceptually a subclass of file issue
trackers: they're file issue trackers where issues arise from checking
each line independently. So make it an actual subclass.
Pylint pointed out the design smell: there was an abstract method that
wasn't always overridden in concrete child classes.
Wildcard patterns now work with command line COMPONENT arguments
without --except as well as with. You can now run e.g.
`all.sh "check_*` to run all the sanity checks.
After backing up and restoring config.h, `git diff-files` may report
it as potentially-changed because it isn't sure whether the index is
up to date. To avoid this, make sure that the git index is up-to-date.
This fixes the warning about changed config.h that you might get when
you run all.sh twice in succession, yet if you run `git status` or
`git diff` everything seems up to date and you no longer get the
warning because these git commands update the index.
https://stackoverflow.com/questions/36367190/git-diff-files-output-changes-after-git-status
Only look for armcc if component_build_armcc or component_build_yotta
is to be executed, instead of requiring the option --no-armcc.
You can still pass --no-armcc, but it's no longer required when
listing components to run. With no list of components or an exclude
list on the command line, --no-armcc is equivalent to having
build_armcc in the exclude list.
Omit the yotta pre-checks if the build_yotta component is not going to
be executed. This makes --no-yotta equivalent to specifying a list of
components to run that doesn't include build_yotta.
Add a conditional execution facility: if a function support_xxx exists
and returns false then component_xxx is not executed (except when the
command line lists an explicit set of components to execute).
Use this facility for the 64-bit-specific or amd64-specific components.
MAKEFLAGS was set to -j if it was already set, instead of being set if
not previously set as intended. So now all.sh will do parallel builds
if invoked without MAKEFLAGS in the environment.
Don't bail out of all.sh if the OS isn't Linux. We only expect
everything to pass on a recent Linux x86_64, but it's useful to call
all.sh to run some components on any platform.
In all.sh, always run both MemorySanitizer and Valgrind. Valgrind is
slower than ASan and MSan but finds some things that they don't.
Run MSan unconditionally, not just on Linux/x86_64. MSan is supported
on some other OSes and CPUs these days.
Use `all.sh --except test_memsan` if you want to omit MSan because it
isn't supported on your platform. Use `all.sh --except test_memcheck`
if you want to omit Valgrind because it's too slow.
Portability: ecognize amd64 (FreeBSD arch string) as well as x86_64
(Linux arch string) for `uname -m`. The `make` utility must still
be GNU make.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
In all.sh, always save config.h before running a component, instead of
doing it manually in each component that requires it (except when we
forget, which has happened). This would break a script that requires
config.h.bak not to exist, but we don't have any of those.
Split the long list of tests into individual functions. Each time the
test code called the `cleanup` function, I start a new function called
`component_xxx`.
Run all the components by enumerating the `component_xxx` functions.
After running each component, call `cleanup`.
A few sanity checks didn't have calls to `cleanup` because they didn't
need them. I put them into separate components anyway, so there are
now a few extra harmless calls to `cleanup`.
Move almost all the code of this script into functions. There is no
intended behavior change. The goal of this commit is to make
subsequent improvements easier to follow.
A very large number of lines have been reintended. To see what's going
on, ignore whitespace differences (e.g. diff -w).
I followed the following rules:
* Minimize the amount of code that gets moved.
* Don't change anything to what gets executed or displayed.
* Almost all the code must end up in a function.
This commit is in preparation for breaking up the sequence of tests
into individual components that can run independently.