ASSERT_COMPARE tests that the two buffers have the same size and
content. The intended use is to replace TEST_ASSERT( size1 == size2 )
followed by memcmp on the content. Keep using memcmp when comparing
two buffers that have the same size by construction.
This commit resolves a bug whereby some test cases failed on systems
where mbedtls_calloc returns NULL when the size of 0, because the test
case asserted `pointer != NULL` regardless of the size.
The new macro ASSERT_ALLOC allocates memory with mbedtls_calloc and
fails the test if the allocation fails. It outputs a null pointer if
the requested size is 0. It is meant to replace existing calls to
mbedtls_calloc.
If some algorithms are excluded in the build, it's ok for the corresponding
macros not to give the correct results. Therefore the corresponding test cases
should depend on the implementation of the algorithm. For example, it's ok for
PSA_HASH_MAX_SIZE to be less than PSA_HASH_SIZE(PSA_ALG_SHA_512) if we build
without SHA-512 support, and we indeed do this. It's even ok for an
implementation to return 0 for PSA_ALG_IS_HASH(PSA_ALG_SHA_512) if it doesn't
support SHA-512; we return 1 anyway but the tests are less
implementation-specific if we don't enforce it.
This commit adds dependencies on symbols that don't exist in Mbed TLS,
for algorithms that Mbed TLS doesn't implement. These are:
MBEDTLS_SHA512_256 for SHA-512/256, MBEDTLS_SHA3_C for SHA-3,
MBEDTLS_DSA_C and MBEDTLS_DSA_DETERMINISTIC for DSA, and
MBEDTLS_ECP_DP_xxx_ENABLED for elliptic curves that have a PSA
encoding but are not supported in Mbed TLS.
For all key types, validate feature test macros (PSA_KEY_TYPE_IS_xxx).
For asymmetric keys (public key or key pair), validate the
corresponding public/pair type.
For ECC keys, validate GET_CURVE.
For all algorithms, validate feature test macros (PSA_ALG_IS_xxx).
For hash algorithms, validate the exact hash size, and validate
xxx_GET_HASH macros on dependent algorithms.
For MAC algorithms, validate the MAC size. For AEAD algorithms,
validate the tag size.
There is a separate test case for each HMAC algorithm, which is
necessary because each has its own MAC size. For other hash-dependent
algorithms, there is no interesting variation to test here, so only
one hash gets tested.
OFB and CFB are streaming modes. XTS is a not a cipher mode but it
doesn't use a separate padding step. This leaves only CBC as a block
cipher mode that needs a padding step.
Since CBC is the only mode that uses a separate padding step, and is
likely to remain the only mode in the future, encode the padding mode
directly in the algorithm constant, rather than building up an
algorithm value from a chaining mode and a padding mode. This greatly
simplifies the interface as well as some parts of the implementation.
Don't rely on static initialization of a flexible array member, that's
a GNU extension. The previous code also triggered a Clang warning
"suggest braces around initialization of subobject" (-Wmissing-braces)
for `struct {char a[]} = {"foo"}`.
This is not useful to validate the implementation when importing
canonical input, which is the case for most import/export test cases,
but it helps validate the sanity checks themselves.
Implement sanity checks of exported public keys, using ASN.1 parsing.
Rewrite the sanity checks of key pairs using ASN.1 parsing, so as to
check more things with simpler code.
Move the code to perform sanity checks on the exported key from
generate_key to exercise_key. This way the sanity checks can be
performed after importing or deriving a key as well.
In addition to checking the exported key if its usage allows it, check
the exported public key if the key is asymmetric.
The last slot in the array was not freed due to an off-by-one error.
Amend the fill_slots test to serve as a non-regression test for this
issue: without this bug fix, it would cause a memory leak.
In psa_generator_import_key, if generating a DES or 3DES key, set the
parity bits.
Add tests for deriving a DES key. Also test deriving an AES key while
I'm at it.
In psa_generator_hkdf_read, return BAD_STATE if we're trying to
construct more output than the algorithm allows. This can't happen
through the API due to the capacity limit, but it could potentially
happen in an internal call.
Also add a test case that verifies that we can set up HKDF with its
maximum capacity and read up to the maximum capacity.
New key type PSA_KEY_TYPE_DERIVE. New usage flag PSA_KEY_USAGE_DERIVE.
New function psa_key_derivation.
No key derivation algorithm is implemented yet. The code may not
compile with -Wunused.
Write some unit test code for psa_key_derivation. Most of it cannot be
used yet due to the lack of a key derivation algorithm.
In asymmetric_encrypt_decrypt, use the buffer size advertized by the
library for the ciphertext, and the length of the plaintext for the
re-decrypted output.
Test the output length if known. Require it to be 0 on error for
encrypt/decrypt functions. If the output length is unknown, test at
least that it's within the buffer limits.