In psa_asymmetric_sign, immediately reject an empty signature buffer.
This can never be right.
Add test cases (one RSA and one ECDSA).
Change the SE HAL mock tests not to use an empty signature buffer.
Add tests for derivation.
Test both 7 bits and 9 bits, in case the implementation truncated the
bit size down and 7 was rejected as 0 rather than because it isn't a
multiple of 8.
There is no corresponding test for import because import determines
the key size from the key data, which is always a whole number of bytes.
Test the behavior of the getter/setter functions.
Test that psa_get_key_slot_number() reports a slot number for a key in
a secure element, and doesn't report a slot number for a key that is
not in a secure element.
Test that psa_get_key_slot_number() reports the correct slot number
for a key in a secure element.
Add tests that call psa_generate_random() (possibly via
psa_generate_key()) with a size that's larger than
MBEDTLS_CTR_DRBG_MAX_REQUEST. This causes psa_generate_random() to
fail because it calls mbedtls_ctr_drbg_random() without taking the
maximum request size of CTR_DRBG into account.
Non-regression test for #206
65528 bits is more than any reasonable key until we start supporting
post-quantum cryptography.
This limit is chosen to allow bit-sizes to be stored in 16 bits, with
65535 left to indicate an invalid value. It's a whole number of bytes,
which facilitates some calculations, in particular allowing a key of
exactly PSA_CRYPTO_MAX_STORAGE_SIZE to be created but not one bit
more.
As a resource usage limit, this is arguably too large, but that's out
of scope of the current commit.
Test that key import, generation and derivation reject overly large
sizes.
Add a few test cases to ensure that alg=0 in policy does not allow
using the key for an operation.
Add a test case to ensure that ANY_HASH does not have a wildcard
meaning for HMAC.
This change affects the psa_key_derivation_s structure. With the buffer
removed from the union, it is empty if MBEDTLS_MD_C is not defined.
We can avoid undefined behaviour by adding a new dummy field that is
always present or make the whole union conditional on MBEDTLS_MD_C.
In this latter case the initialiser macro has to depend on MBEDTLS_MD_C
as well. Furthermore the first structure would be either
psa_hkdf_key_derivation_t or psa_tls12_prf_key_derivation_t both of
which are very deep and would make the initialisation macro difficult
to maintain, therefore we go with the first option.
Part of the tests are adapted in this commit, another part is already
covered by the derive_input tests and some of them are not applicable to
the new API (the new API does not request capacity at the setup stage).
The test coverage temporarily drops with this commit, the two test cases
conserning capacity will be re-added in a later commit.
In the 1.0 API some functionality has been split from the
psa_key_derivation_setup() function and is now done with the
psa_key_derivation_input_*() functions. The new tests maintain the
existing test coverage of this functionality.
Add the compile time option PSA_PRE_1_0_KEY_DERIVATION. If this is not
turned on, then the function `psa_key_derivation()` is removed.
Most of the tests regarding key derivation haven't been adapted to the
new API yet and some of them have only been adapted partially. When this
new option is turned off, the tests using the old API and test cases
using the old API of partially adapted tests are skipped.
The sole purpose of this option is to make the transition to the new API
smoother. Once the transition is complete it can and should be removed
along with the old API and its implementation.
Add parameters to psa_copy_key tests for the enrollment algorithm (alg2).
This commit only tests with alg2=0, which is equivalent to not setting
an enrollment algorithm.
Manually cherry-picked from ca5bed742f
by taking that patch, replacing KEYPAIR by KEY_PAIR
throughout (renaming applied in this branch), and discarding parts
about import_twice in test_suite_psa_crypto (this test function was
removed from this branch).
When importing a private elliptic curve key, require the input to have
exactly the right size. RFC 5915 requires the right size (you aren't
allow to omit leading zeros). A different buffer size likely means
that something is wrong, e.g. a mismatch between the declared key type
and the actual data.
psa_set_key_lifetime and psa_set_key_id aren't pure setters: they also
set the other attribute in some conditions. Add dedicated tests for
this behavior.