The fields
- mbedtls_ssl_handshake_params::max_major_ver,
- mbedtls_ssl_handshake_params::max_minor_ver
are used only for server-side RSA-based key exchanges
can be removed otherwise.
Reasons:
- If the transport type is fixed at compile-time,
mbedtls_ssl_read_version() and mbedtls_ssl_write_version()
are called with a compile-time determined `transport`
parameter, so the transport-type branch in their body
can be eliminated at compile-time.
- mbedtls_ssl_read_version() is called with addresses of
local variables, which so far need to be put on the stack
to be addressable. Inlining the call allows to read directly
into the registers holding these local variables.
This saves 60 bytes w.r.t. the measurement performed by
> ./scripts/baremetal.sh --rom --gcc
If the minor/major version is enforced at compile-time, the `major_ver`
and `minor_ver` fields in `mbedtls_ssl_context` are redundant and can
be removed.
This commit introduces the numeric compile-time constants
- MBEDTLS_SSL_CONF_MIN_MINOR_VER
- MBEDTLS_SSL_CONF_MAX_MINOR_VER
- MBEDTLS_SSL_CONF_MIN_MAJOR_VER
- MBEDTLS_SSL_CONF_MAX_MAJOR_VER
which, when defined, overwrite the runtime configurable fields
mbedtls_ssl_config::min_major_ver etc. in the SSL configuration.
As for the preceding case of the ExtendedMasterSecret configuration,
it also introduces and puts to use getter functions for these variables
which evaluate to either a field access or the macro value, maintaining
readability of the code.
The runtime configuration API mbedtls_ssl_conf_{min|max}_version()
is kept for now but has no effect if MBEDTLS_SSL_CONF_XXX are set.
This is likely to be changed in a later commit but deliberately omitted
for now, in order to be able to study code-size benefits earlier in the
process.
* origin/pr/2744:
Fix parsing issue when int parameter is in base 16
Refactor receive_uint32()
Refactor get_byte function
Make the script portable to both pythons
Update the test encoding to support python3
update the test script
Fix error `ValueError: invalid literal for int() with base 10:` that
is caused when a parameter is given in base 16. Use relevant base
when calling `int()` function.
Call `greentea_getc()` 8 times, and then `unhexify` once, instead of
calling `receive_byte()`, which inside calls `greentea_getc()` twice,
for every hex digit.
Since Python3 handles encoding differently than Python2,
a change in the way the data is encoded and sent to the target is needed.
1. Change the test data to be sent as hex string
2. Convert the characters to binary bytes.
This is done because the mbed tools translate the encoding differently
(mbed-greentea, and mbed-htrunner)
Limit log output in compat.sh and ssl-opt.sh, in case of failures with
these scripts where they may output seemingly unlimited length error
logs.
Note that ulimit -f uses units of 512 bytes, so we use 10 * 1024 * 1024
* 2 to get 10 GiB.
* origin/pr/2739:
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
This commit restructures ssl_ciphersuites.h and ssl_ciphersuites.c to
define all ciphersuite helper functions static inline in ssl_ciphersuites.h
if MBEDTLS_SSL_CONF_SINGLE_CIPHERSUITE is set, and to otherwise put their
definitions in ssl_ciphersuites.c.
If MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled, the type
mbedtls_ssl_ciphersuite_handle_t
is logically a boolean (concretely realized as `unsigned char`),
containing the invalid handle and the unique valid handle, which
represents the single enabled ciphersuite.
The SSL session structure mbedtls_ssl_session contains an instance
of mbedtls_ssl_ciphersuite_handle_t which is guaranteed to be valid,
and which is hence redundant in any two-valued implementation of
mbedtls_ssl_ciphersuite_handle_t.
This commit replaces read-uses of
mbedtls_ssl_session::ciphersuite_info
by a getter functions which, and defines this getter function
either by just reading the field from the session structure
(in case MBEDTLS_SSL_SINGLE_CIPHERSUITE is disabled), or by
returning the single valid ciphersuite handle (in case
MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled) and removing the
field from mbedtls_ssl_session in this case.
If MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled, it overwrites
the runtime configuration of supported ciphersuites, which
includes both the configuration API and the fields which are
used to store the configuration. Both are therefore no longer
needed and should be removed for the benefit of code-size,
memory usage, and API clarity (no accidental hiccup of runtime
vs. compile-time configuration possible).
The configuration API mbedtls_ssl_conf_ciphersuites() has
already been removed in case MBEDTLS_SSL_SINGLE_CIPHERSUITE,
and this commit removes the field
mbedtls_ssl_config::ciphersuite_list
which it updates.
If MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled, the type
mbedtls_ssl_ciphersuite_handle_t
is logically a boolean (concretely realized as `unsigned char`),
containing the invalid handle and the unique valid handle, which
represents the single enabled ciphersuite.
The SSL handshake structure mbedtls_ssl_handshake_params contains
an instance of mbedtls_ssl_ciphersuite_handle_t which is guaranteed
to be valid, and which is hence redundant in any two-valued
implementation of mbedtls_ssl_ciphersuite_handle_t.
This commit replaces read-uses of
mbedtls_ssl_handshake_params::ciphersuite_info
by a getter functions which, and defines this getter function
either by just reading the field from the handshake structure
(in case MBEDTLS_SSL_SINGLE_CIPHERSUITE is disabled), or by
returning the single valid ciphersuite handle (in case
MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled) and removing the
field from mbedtls_ssl_handshake_params in this case.
This commit adapts the ClientHello parsing routines in ssl_srv.c
to use the ciphersuite traversal macros
MBEDTLS_SSL_BEGIN_FOR_EACH_CIPHERSUITE
MBEDTLS_SSL_END_FOR_EACH_CIPHERSUITE
introduced in the last commit, thereby making them work
both with and without MBEDTLS_SSL_SINGLE_CIPHERSUITE.
Another notable change concerns the ssl_ciphersuite_match:
Previous, this function would take a ciphersuite ID and a
pointer to a destination ciphersuite info structure as input
and write eithe NULL or a valid ciphersuite info structure
to that destination address, depending on whether the suite
corresponding to the given ID was suitable or not. The
function would always return 0 outside of a fatal error.
This commit changes this to ssl_ciphersuite_is_match() which
instead already takes a ciphersuite handle (which outside
of a hardcoded ciphersuite is the same as the ptr to a
ciphersuite info structure) and returns 0 or 1 (or a
negative error code in case of a fatal error) indicating
whether the suite corresponding to the handle was acceptable
or not. The conversion of the ciphersuite ID to the ciphersuite
info structure is done prior to calling ssl_ciphersuite_is_match().
This commit modifies the ClientHello writing routine ssl_write_client_hello
in ssl_cli.c to switch between
(a) listing all runtime configured ciphersuites
(in case MBEDTLS_SSL_SINGLE_CIPHERSUITE is not defined)
(b) listing just the single hardcoded ciphersuite
(in case MBEDTLS_SSL_SINGLE_CIPHERSUITE is defined)
The approach taken is to introduce a pair of helper macros
MBEDTLS_SSL_BEGIN_FOR_EACH_CIPHERSUITE( ssl, ver, info )
MBEDTLS_SSL_END_FOR_EACH_CIPHERSUITE
which when delimiting a block of code lead to that block of
code being run once for each ciphersuite that's enabled in the
context `ssl` and version `ver`, referenced through the (fresh)
`info` variable. Internally, this is implemented either through
a plain `for` loop traversing the runtime configured ciphersuite
list (if MBEDTLS_SSL_SINGLE_CIPHERSUITE is disabled) or by just
hardcoding `info` to the single enabled ciphersuite (if
MBEDTLS_SSL_SINGLE_CIPHERSUITE is enabled).
These helper macros will prove useful whereever previous code
traversed the runtime configured ciphersuite list, but adaptations
of those occasions outside ClientHello writing are left for later
commits.
This commit is a step towards the goal of allowing to hardcode the choice
of a single ciphersuite at compile-time. The hoped for benefit of this is
that whereever a ciphersuite attribute is queried and checked against a
compile-time constant, the check can be recognized as either true or false
at compile-time, hence leading to a code-size reduction.
For this to work, the ciphersuite attribute getter functions
mbedtls_ssl_suite_get_xxx() will be modified to return something
the compiler can recognize as a compile-time constant. In particular,
in order to avoid relying on constant propagation abilities of the
compiler, these functions should ideally return constant symbols
(instead of, say, fields in a globally const structure instance).
This puts us in the following situation: On the one hand, there's the
array of ciphersuite information structures defining the attribute of
those ciphersuites the stack knows about. On the other hand, we need
direct access to those fields through constant symbols in the getter
functions.
In order to avoid any duplication of information, this commit exemplifies
how ciphersuites can be conveniently defined on the basis of macro
definitions, and how the corresponding instances of the ciphersuite
information structure can be auto-generated from this.
In the approach, to add support for a ciphersuite with official name
NAME (such as TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8), the following macro
constants need to be defined in ssl_ciphersuites.h:
MBEDTLS_SUITE__ NAME __ID
MBEDTLS_SUITE__ NAME __NAME
MBEDTLS_SUITE__ NAME __CIPHER
MBEDTLS_SUITE__ NAME __MAC
...
To make check-names.sh happy, one also needs a dummy macro
MBEDTLS_SUITE__ NAME()
These ciphersuite attribute values can then be queried via
MBEDTLS_SSL_SUITE_ID( NAME_MACRO )
...
where NAME_MACRO can be any macro expanding to a defined NAME.
Further, a convenience macro
MBEDTLS_SSL_SUITE_INFO( NAME_MACRO )
is provided that again takes a macro NAME_MACRO expanding to a
defined NAME, and itself expands to an instance of
mbedtls_ssl_ciphersuite_info_t using the macro attributes
defined for NAME. This macro is then used in ssl_ciphersuites.c
when defining the array of known ciphersuite information structures,
(a) without duplicating the information, and (b) with increased
readability, because there's only one line for each ciphersuite.
This commit introduces an internal zero-cost abstraction layer for
SSL ciphersuites: Instead of addressing ciphersuites via pointers
to instances of mbedtls_ssl_ciphersuite_t and accessing their fields
directly, this commit introduces an opaque type
mbedtls_ssl_ciphersuite_handle_t,
and getter functions
mbedtls_ssl_suite_get_xxx()
operating on ciphersuite handles.
The role of NULL is played by a new macro constant
MBEDTLS_SSL_CIPHERSUITE_INVALID_HANDLE
which results of functions returning handles can be checked against.
(For example, when doing a lookup of a ciphersuite from a peer-provided
ciphersuite ID in the per's Hello message).
The getter functions have the validity of the handle as a precondition
and are undefined if the handle is invalid.
So far, there's only one implementation of this abstraction layer, namely
mbedtls_ssl_ciphersuite_handle_t being mbedtls_ssl_ciphersuite_t const *
and
getter functions being field accesses.
In subsequent commits, however, the abstraction layer will be useful
to save code in the situation where only a single ciphersuite is enabled.
Previously, ssl.h included ssl_ciphersuites.h to have access to the
helper macros MBEDTLS_KEY_EXCHANGE_XXX_ENABLED, and for no other
reason. This commit moves the definitions of these macros to ssl.h,
thereby removing the dependency of ssl.h on ssl_ciphersuites.h.
Record the commit ID in addition to the symbolic name of the version
being tested. This makes it easier to figure out what has been
compared when reading logs that don't always indicate explicitly what
things like HEAD are.
This makes the title of HTML reports somewhat verbose, but I think
that's a small price to pay.