See for example page 8 of
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
The previous constant probably came from a typo as it was 2^26 - 2^5 instead
of 2^36 - 2^5. Clearly the intention was to allow for a constant bigger than
2^32 as the ull suffix and cast to uint64_t show.
fixes#362
In case an entry with the given OID already exists in the list passed to
mbedtls_asn1_store_named_data() and there is not enough memory to allocate
room for the new value, the existing entry will be freed but the preceding
entry in the list will sill hold a pointer to it. (And the following entries
in the list are no longer reachable.) This results in memory leak or a double
free.
The issue is we want to leave the list in a consistent state on allocation
failure. (We could add a warning that the list is left in inconsistent state
when the function returns NULL, but behaviour changes that require more care
from the user are undesirable, especially in a stable branch.)
The chosen solution is a bit inefficient in that there is a time where both
blocks are allocated, but at least it's safe and this should trump efficiency
here: this code is only used for generating certificates, which is unlikely to
be done on very constrained devices, or to be in the critical loop of
anything. Also, the sizes involved should be fairly small anyway.
fixes#367
Remove check on the pathLenConstraint value when looking for a parent to the
EE cert, as the constraint is on the number of intermediate certs below the
parent, and that number is always 0 at that point, so the constraint is always
satisfied.
The check was actually off-by-one, which caused valid chains to be rejected
under the following conditions:
- the parent certificate is not a trusted root, and
- it has pathLenConstraint == 0 (max_pathlen == 1 in our representation)
fixes#280
* iotssl-519-asn1write-overflows-restricted:
Fix other int casts in bounds checking
Fix other occurrences of same bounds check issue
Fix potential buffer overflow in asn1write
* iotssl-515-max-pathlen:
Add Changelog entries for this branch
Fix a style issue
Fix whitespace at EOL issues
Use symbolic constants in test data
Fixed pathlen contraint enforcement.
Additional corner cases for testing pathlen constrains. Just in case.
Added test case for pathlen constrains in intermediate certificates
fixes#310
Actually all key exchanges that use a certificate use signatures too, and
there is no key exchange that uses signatures but no cert, so merge those two
flags.
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.
Found by Guido Vranken.
Two possible integer overflows (during << 2 or addition in BITS_TO_LIMB())
could result in far too few memory to be allocated, then overflowing the
buffer in the subsequent for loop.
Both integer overflows happen when slen is close to or greater than
SIZE_T_MAX >> 2 (ie 2^30 on a 32 bit system).
Note: one could also avoid those overflows by changing BITS_TO_LIMB(s << 2) to
CHARS_TO_LIMB(s >> 1) but the solution implemented looks more robust with
respect to future code changes.
There is only one length byte but for some reason we skipped two, resulting in
reading one byte past the end of the extension. Fortunately, even if that
extension is at the very end of the ClientHello, it can't be at the end of the
buffer since the ClientHello length is at most SSL_MAX_CONTENT_LEN and the
buffer has some more room after that for MAC and so on. So there is no
buffer overread.
Possible consequences are:
- nothing, if the next byte is 0x00, which is a comment first byte for other
extensions, which is why the bug remained unnoticed
- using a point format that was not offered by the peer if next byte is 0x01.
In that case the peer will reject our ServerKeyExchange message and the
handshake will fail.
- thinking that we don't have a common point format even if we do, which will
cause us to immediately abort the handshake.
None of these are a security issue.
The same bug was fixed client-side in fd35af15