With the removal of MBEDTLS_MEMORY_BUFFER_ALLOC_C from the
full config, there are no tests for it remaining in all.sh.
This commit adds a build as well as runs of `make test` and
`ssl-opt.sh` with MBEDTLS_MEMORY_BUFFER_ALLOC_C enabled to all.sh.
Previously, numerous all.sh tests manually disabled the buffer allocator
or memory backtracting after setting a full config as the starting point.
With the removal of MBEDTLS_MEMORY_BACKTRACE and MBEDTLS_MEMORY_BUFFER_ALLOC_C
from full configs, this is no longer necessary.
Without any -O option, the default is -O0, and then the assembly code
is not used, so this would not be a non-regression test for the
assembly code that doesn't build.
* restricted/pr/582:
Add a test for signing content with a long ECDSA key
Add documentation notes about the required size of the signature buffers
Add missing MBEDTLS_ECP_C dependencies in check_config.h
Change size of preallocated buffer for pk_sign() calls
* origin/pr/2701:
Add all.sh component that exercises invalid_param checks
Remove mbedtls_param_failed from programs
Make it easier to define MBEDTLS_PARAM_FAILED as assert
Make test suites compatible with #include <assert.h>
Pass -m32 to the linker as well
With the change to the full config, there were no longer any tests
that exercise invalid-parameter behavior. The test suite exercises
invalid-parameter behavior by calling TEST_INVALID_PARAM and friends,
relying on the test suite's mbedtls_check_param function. This
function is only enabled if MBEDTLS_CHECK_PARAMS is defined but not
MBEDTLS_CHECK_PARAMS_ASSERT.
Add a component to all.sh that enables MBEDTLS_CHECK_PARAMS but
disables MBEDTLS_CHECK_PARAMS_ASSERT and doesn't define
MBEDTLS_PARAM_FAILED. This way, the xxx_invalid_param() tests do run.
Since sample programs don't provide a mbedtls_check_param function,
this component doesn't build the sample programs.
For unit tests and sample programs, CFLAGS=-m32 is enough to get a
32-bit build, because these programs are all compiled directly
from *.c to the executable in one shot. But with makefile rules that
first build object files and then link them, LDFLAGS=-m32 is also
needed.
* origin/pr/2497:
Re-generate library/certs.c from script
Add new line at the end of test-ca2.key.enc
Use strict syntax to annotate origin of test data in certs.c
Add run to all.sh exercising !MBEDTLS_PEM_PARSE_C + !MBEDTLS_FS_IO
Allow DHM self test to run without MBEDTLS_PEM_PARSE_C
ssl-opt.sh: Auto-skip tests that use files if MBEDTLS_FS_IO unset
Document origin of hardcoded certificates in library/certs.c
Adapt ChangeLog
Rename server1.der to server1.crt.der
Add DER encoded files to git tree
Add build instructions to generate DER versions of CRTs and keys
Document "none" value for ca_path/ca_file in ssl_client2/ssl_server2
ssl_server2: Skip CA setup if `ca_path` or `ca_file` argument "none"
ssl_client2: Skip CA setup if `ca_path` or `ca_file` argument "none"
Correct white spaces in ssl_server2 and ssl_client2
Adapt ssl_client2 to parse DER encoded test CRTs if PEM is disabled
Adapt ssl_server2 to parse DER encoded test CRTs if PEM is disabled
Due to the way the current PK API works, it may have not been clear
for the library clients, how big output buffers they should pass
to the signing functions. Depending on the key type they depend on
MPI or EC specific compile-time constants.
Inside the library, there were places, where it was assumed that
the MPI size will always be enough, even for ECDSA signatures.
However, for very small sizes of the MBEDTLS_MPI_MAX_SIZE and
sufficiently large key, the EC signature could exceed the MPI size
and cause a stack overflow.
This test establishes both conditions -- small MPI size and the use
of a long ECDSA key -- and attempts to sign an arbitrary file.
This can cause a stack overvlow if the signature buffers are not
big enough, therefore the test is performed for an ASan build.
Run ssl-opt.sh on x86_32 with ASan. This may detect bugs that only
show up on 32-bit platforms, for example due to size_t overflow.
For this component, turn off some memory management features that are
not useful, potentially slow, and may reduce ASan's effectiveness at
catching buffer overflows.
* origin/pr/2470:
Silence pylint
check-files.py: readability improvement in permission check
check-files.py: use class fields for class-wide constants
check-files.py: clean up class structure
abi_check.py: Document more methods
check-files.py: document some classes and methods
Fix pylint errors going uncaught
Call pylint3, not pylint
New, documented pylint configuration
Make check-python-files.sh run pylint on all *.py files (in
directories where they are known to be present), rather than list
files explicitly.
Fix a bug whereby the return status of check-python-files.sh was only
based on the last file passing, i.e. errors in other files were
effectively ignored.
Make check-python-files.sh run pylint unconditionally. Since pylint3
is not critical, make all.sh to skip running check-python-files.sh if
pylint3 is not available.
When all.sh invokes check_headers_in_cpp, a backup config.h exists. This
causes a stray difference vs cpp_dummy_build.cpp. Fix by only collecting
the *.h files in include/mbedtls.
Change-Id: Ifd415027e856858579a6699538f06fc49c793570
Wildcard patterns now work with command line COMPONENT arguments
without --except as well as with. You can now run e.g.
`all.sh "check_*` to run all the sanity checks.
After backing up and restoring config.h, `git diff-files` may report
it as potentially-changed because it isn't sure whether the index is
up to date. Use `git diff` instead: it actually reads the file.
Only look for armcc if component_build_armcc is to be executed,
instead of requiring the option --no-armcc.
You can still pass --no-armcc, but it's no longer required when
listing components to run. With no list of components or an exclude
list on the command line, --no-armcc is equivalent to having
build_armcc in the exclude list.
Build the list of components to run in $RUN_COMPONENTS as part of
command line parsing. After parsing the command line, it no longer
matters how this list was built.
Extract the list of available components by looking for definitions of
functions called component_xxx. The previous code explicitly listed
all components in run_all_components, which opened the risk of
forgetting to list a component there.
Add a conditional execution facility: if a function support_xxx exists
and returns false then component_xxx is not executed (except when the
command line lists an explicit set of components to execute).
MAKEFLAGS was set to -j if it was already set, instead of being set if
not previously set as intended. So now all.sh will do parallel builds
if invoked without MAKEFLAGS in the environment.
Don't bail out of all.sh if the OS isn't Linux. We only expect
everything to pass on a recent Linux x86_64, but it's useful to call
all.sh to run some components on any platform.
In all.sh, always run both MemorySanitizer and Valgrind. Valgrind is
slower than ASan and MSan but finds some things that they don't.
Run MSan unconditionally, not just on Linux/x86_64. MSan is supported
on some other OSes and CPUs these days.
Use `all.sh --except test_memsan` if you want to omit MSan because it
isn't supported on your platform. Use `all.sh --except test_memcheck`
if you want to omit Valgrind because it's too slow.
Make the test scripts more portable (tested on FreeBSD): don't insist
on GNU sed, and recognize amd64 as well as x86_64 for `uname -m`. The
`make` utility must still be GNU make.