Add comments noting that the maximum length of a MAC must fit in
PSA_ALG_MAC_TRUNCATION_MASK. Add a unit test that verifies that the
maximum MAC size fits.
Pass the nonce first, then the AD, then the input. This is the order
in which the data is processed and it's the order of the parameters to
the API functions.
There was a lot of repetition between psa_aead_encrypt and
psa_aead_decrypt. Refactor the code into a new function psa_aead_setup.
The new code should behave identically except that in some cases where
multiple error conditions apply, the code may now return a different
error code.
Internally, I rearranged some of the code:
* I removed a check that the key type was in CATEGORY_SYMMETRIC because
it's redundant with mbedtls_cipher_info_from_psa which enumerates
supported key types explicitly.
* The order of some validations is different to allow the split between
setup and data processing. The code now calls a more robust function
psa_aead_abort in case of any error after the early stage of the setup.
Exclude ".git" directories anywhere. This avoids spurious errors in git
checkouts that contain branch names that look like a file
check-files.py would check.
Exclude "mbed-os" anywhere and "examples" from the root. Switch to the
new mechanism to exclude "yotta/module". These are directories where
we store third-party files that do not need to match our preferences.
Exclude "cov-int" from the root. Fix#1691
We don't need to disable ASLR, so don't try. If gdb tries but fails,
the test runs normally, but all.sh then trips up because it sees
`warning: Error disabling address space randomization: Operation not permitted`
and interprets it as an error that indicates a test failure.
Even with a shallow clone of the repo where there are no tags available
to version with, don't error and instead show a unique abbreviated
commit hash as fallback.
Generate the documentation from include and doxygen/input only. Don't
get snared by files containing Doxygen comments that lie in other
directories such as tests, yotta, crypto/include, ...
The only difference this makes in a fresh checkout is that the
documentation no longer lists target_config.h. This file is from
yotta, does not contain any Doxygen comment, and its inclusion in the
rendered documentation was clearly an oversight.
This commit fixes some missing size comparison. In
aead_encrypt_decrypt, aead_encrypt and aead_decrypt, the test code
would not have noticed if the library function had reported an output
length that was not the expected length.
ASSERT_COMPARE tests that the two buffers have the same size and
content. The intended use is to replace TEST_ASSERT( size1 == size2 )
followed by memcmp on the content. Keep using memcmp when comparing
two buffers that have the same size by construction.
This commit resolves a bug whereby some test cases failed on systems
where mbedtls_calloc returns NULL when the size of 0, because the test
case asserted `pointer != NULL` regardless of the size.
The new macro ASSERT_ALLOC allocates memory with mbedtls_calloc and
fails the test if the allocation fails. It outputs a null pointer if
the requested size is 0. It is meant to replace existing calls to
mbedtls_calloc.
If some algorithms are excluded in the build, it's ok for the corresponding
macros not to give the correct results. Therefore the corresponding test cases
should depend on the implementation of the algorithm. For example, it's ok for
PSA_HASH_MAX_SIZE to be less than PSA_HASH_SIZE(PSA_ALG_SHA_512) if we build
without SHA-512 support, and we indeed do this. It's even ok for an
implementation to return 0 for PSA_ALG_IS_HASH(PSA_ALG_SHA_512) if it doesn't
support SHA-512; we return 1 anyway but the tests are less
implementation-specific if we don't enforce it.
This commit adds dependencies on symbols that don't exist in Mbed TLS,
for algorithms that Mbed TLS doesn't implement. These are:
MBEDTLS_SHA512_256 for SHA-512/256, MBEDTLS_SHA3_C for SHA-3,
MBEDTLS_DSA_C and MBEDTLS_DSA_DETERMINISTIC for DSA, and
MBEDTLS_ECP_DP_xxx_ENABLED for elliptic curves that have a PSA
encoding but are not supported in Mbed TLS.
For all key types, validate feature test macros (PSA_KEY_TYPE_IS_xxx).
For asymmetric keys (public key or key pair), validate the
corresponding public/pair type.
For ECC keys, validate GET_CURVE.
For all algorithms, validate feature test macros (PSA_ALG_IS_xxx).
For hash algorithms, validate the exact hash size, and validate
xxx_GET_HASH macros on dependent algorithms.
For MAC algorithms, validate the MAC size. For AEAD algorithms,
validate the tag size.
There is a separate test case for each HMAC algorithm, which is
necessary because each has its own MAC size. For other hash-dependent
algorithms, there is no interesting variation to test here, so only
one hash gets tested.
None of the currently defined MAC algorithms have a MAC size that
depends on the key size, so the key_bits parameter is unused. The
key_type parameter may be unused on an implementation where there is
no block cipher MAC. Declare the key_type and key_bits parameters as
used so that callers who define a variable just for this don't risk
getting "unused variable" warnings.
The macro was used under the name PSA_ALG_IS_BLOCK_CIPHER_MAC but
defined as PSA_ALG_IS_CIPHER_MAC. That wouldn't have worked if we used
this macro (we currently don't but it may become useful).
TLS now defines named curves in the "TLS Supported Groups registry",
but we're using the encoding only for elliptic curves, so don't
include values that aren't named curve.
While we're at it, upgrade the reference to the shiny new RFC 8422.
OFB and CFB are streaming modes. XTS is a not a cipher mode but it
doesn't use a separate padding step. This leaves only CBC as a block
cipher mode that needs a padding step.
Since CBC is the only mode that uses a separate padding step, and is
likely to remain the only mode in the future, encode the padding mode
directly in the algorithm constant, rather than building up an
algorithm value from a chaining mode and a padding mode. This greatly
simplifies the interface as well as some parts of the implementation.
Mbed TLS distinguishes "invalid padding" from "valid padding but the
rest of the signature is invalid". This has little use in practice and
PSA doesn't report this distinction. We just report "invalid
signature".