Changes the IP address to bind to for dtls_server.c to be "::" or optionally
"0.0.0.0" if the preprocessor symbol FORCE_IPV4 is defined.
Also changes the destinaton IP address for dtls_client.c to be "::1" or if
FORCE_IPV4 symbol is defined "127.0.0.1".
This change allows on compilation dtls_server.c and dtls_client.c to both be
compiled to use either IPv4 or IPv6 so out of the box they will work together
without problem, and to avoid dtls_server.c binding to IPv6 and dtls_client.c
binding to IPv4.
sprintf( (char *) buf, "%s\r\n", base );
Above code generates Wformat-overflow warning since both buf and base
are of same size. buf should be sizeof( base ) + characters added in
the format. In this case format 2 bytes for "\r\n".
The race goes this way:
1. ssl_recv() succeeds (ie no signal received yet)
2. processing the message leads to aborting handshake with ret != 0
3. reset ret if we were signaled
4. print error if ret is still non-zero
5. go back to net_accept() which can be interrupted by a signal
We print the error message only if the signal is received between steps 3 and
5, not when it arrives between steps 1 and 3.
This can cause failures in ssl-opt.sh where we check for the presence of "Last
error was..." in the server's output: if we perform step 2, the client will be
notified and exit, then ssl-opt.sh will send SIGTERM to the server, but if it
didn't get a chance to run and pass step 3 in the meantime, we're in trouble.
The purpose of step 3 was to avoid spurious "Last error" messages in the
output so that ssl-opt.sh can check for a successful run by the absence of
that message. However, it is enough to suppress that message when the last
error we get is the one we expect from being interrupted by a signal - doing
more could hide real errors.
Also, improve the messages printed when interrupted to make it easier to
distinguish the two cases - this could be used in a testing script wanted to
check that the server doesn't see the client as disconnecting unexpectedly.
1) The MPI test for prime generation missed a return value
check for a call to `mbedtls_mpi_shift_r`. This is neither
critical nor new but should be fixed.
2) The RSA keygeneration example program contained code
initializing an RSA context after a potentially failing
call to CTR DRBG initialization, leaving the corresponding
RSA context free call in the cleanup section orphaned.
The commit fixes this by moving the initializtion of the
RSA context prior to the first potentially failing call.
This commit adds the following command line options to programs/x509/cert_write:
- version (val 1, 2, 3): Set the certificate's version (v1, v2, v3)
- authority_identifier (val 0, 1): Enable or disable the addition of the
authority identifier extension.
- subject_identifier (val 0, 1): Enable or disable the addition of the
subject identifier extension.
- basic_constraints (val 0, 1): Enable or disable the addition of the
basic constraints extension.
- md (val MD5, SHA1, SHA256, SHA512): Set the hash function used
when creating the CRT.
The AES sample application programs/aes/aescrypt2 could miss zeroizing
the stack-based key buffer in case of an error during operation. This
commit fixes this and also clears another temporary buffer as well as
all command line arguments (one of which might be the key) before exit.
The AES sample application programs/aes/crypt_and_hash could miss
zeroizing the stack-based key buffer in case of an error during
operation. This commit fixes this and also clears all command line
arguments (one of which might be the key) before exit.
In the ecdsa.c sample application we don't use hashing, we use ecdsa
directly on a buffer containing plain text. Although the text explains
that it should be the message hash it still can be confusing.
Any misunderstandings here are potentially very dangerous, because ECDSA
truncates the message hash if necessary and this can lead to trivial
signature forgeries if the API is misused and the message is passed
directly to the function without hashing.
This commit adds a hash computation step to the ecdsa.c sample
application and clarification to the doxygen documentation of the
ECDSA functions involved.
This commit adds four tests to tests/ssl-opt.sh:
(1) & (2): Check behaviour of optional/required verification when the
trusted CA chain is empty.
(3) & (4): Check behaviour of optional/required verification when the
client receives a server certificate with an unsupported curve.