This commit implements the internal key slot management performed
by PSA-based cipher contexts. Specifically, `mbedtls_cipher_setkey()`
wraps the provided raw key material into a key slot, and
`mbedtls_cipher_free()` destroys that key slot.
This field determines whether a cipher context should
use an external implementation of the PSA Crypto API for
cryptographic operations, or Mbed TLS' own crypto library.
The commit also adds dummy implementations for the cipher API.
mbedtls_cipher_setup_psa() should return
MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE when the requested
cipher is not supported by PSA, so that the caller can
try the original mbedtls_cipher_setup() instead.
The previous version of mbedtls_cipher_setup_psa(), however,
only attempted to translate the cipher mode (GCM, CCM, CBC,
ChaChaPoly, Stream), but didn't consider the underlying
cipher primitive. Hence, it wouldn't fail when attempting
to setup a cipher context for, say, 3DES-CBC, where CBC
is currently supported by PSA but 3DES isn't.
This commit adds a check to mbedtls_cipher_setup_psa()
for whether the requested cipher primitive is available
in the underlying PSA Crypto implementation, and fails
cleanly with MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE if
it is isn't.
For AEAD ciphers, the information contained in mbedtls_cipher_info
is not enough to deduce a PSA algorithm value of type psa_algorithm_t.
This is because mbedtls_cipher_info doesn't contain the AEAD tag
length, while values of type psa_algorithm_t do.
This commit adds the AEAD tag length as a separate parameter
to mbedtls_cipher_setup_psa(). For Non-AEAD ciphers, the value
must be 0.
This approach is preferred over passing psa_algorithm_t directly
in order to keep the changes in existing code using the cipher layer
small.
Mbed TLS cipher layer allows usage of keys for other purposes
than indicated in the `operation` parameter of `mbedtls_cipher_setkey()`.
The semantics of the PSA Crypto API, in contrast, checks key
usage against the key policy.
As a remedy, this commit modifies the PSA key slot setup to
always allow both encryption and decryption.
This commit implements the internal key slot management performed
by PSA-based cipher contexts. Specifically, `mbedtls_cipher_setkey()`
wraps the provided raw key material into a key slot, and
`mbedtls_cipher_free()` destroys that key slot.
This field determines whether a cipher context should
use an external implementation of the PSA Crypto API for
cryptographic operations, or Mbed TLS' own crypto library.
The commit also adds dummy implementations for the cipher API.
Address review comments:
1. add `mbedtls_cipher_init()` after freeing context, in test code
2. style comments
3. set `ctx->iv_size = 0` in case `IV == NULL && iv_len == 0`
Move definition of `MBEDTLS_CIPHER_MODE_STREAM` to header file
(`mbedtls_cipher_internal.h`), because it is used by more than
one file. Raised by TrinityTonic in #1719
* development: (182 commits)
Change the library version to 2.11.0
Fix version in ChangeLog for fix for #552
Add ChangeLog entry for clang version fix. Issue #1072
Compilation warning fixes on 32b platfrom with IAR
Revert "Turn on MBEDTLS_SSL_ASYNC_PRIVATE by default"
Fix for missing len var when XTS config'd and CTR not
ssl_server2: handle mbedtls_x509_dn_gets failure
Fix harmless use of uninitialized memory in ssl_parse_encrypted_pms
SSL async tests: add a few test cases for error in decrypt
Fix memory leak in ssl_server2 with SNI + async callback
SNI + SSL async callback: make all keys async
ssl_async_resume: free the operation context on error
ssl_server2: get op_name from context in ssl_async_resume as well
Clarify "as directed here" in SSL async callback documentation
SSL async callbacks documentation: clarify resource cleanup
Async callback: use mbedtls_pk_check_pair to compare keys
Rename mbedtls_ssl_async_{get,set}_data for clarity
Fix copypasta in the async callback documentation
SSL async callback: cert is not always from mbedtls_ssl_conf_own_cert
ssl_async_set_key: detect if ctx->slots overflows
...
Allowing DECRYPT with crypt_and_tag is a risk as people might fail to check
the tag correctly (or at all). So force them to use auth_decrypt() instead.
See also https://github.com/ARMmbed/mbedtls/pull/1668
That's what it is. So we shouldn't set a block size != 1.
While at it, move call to chachapoly_update() closer to the one for GCM, as
they are similar (AEAD).
This module used (len, pointer) while (pointer, len) is more common in the
rest of the library, in particular it's what's used in the GCM API that
very comparable to it, so switch to (pointer, len) for consistency.
Note that the crypt_and_tag() and auth_decrypt() functions were already using
the same convention as GCM, so this also increases intra-module consistency.
While the old name is explicit and aligned with the RFC, it's also very long,
so with the mbedtls_ prefix prepended we get a 31-char prefix to each
identifier, which quickly conflicts with our 80-column policy.
The new name is shorter, it's what a lot of people use when speaking about
that construction anyway, and hopefully should not introduce confusion at
it seems unlikely that variants other than 20/1305 be standardised in the
foreseeable future.
I refactored some code into the function mbedtls_constant_time_memcmp
in commit 7aad291 but this function is only used by GCM and
AEAD_ChaCha20_Poly1305 to check the tags. So this function is now
only enabled if either of these two ciphers is enabled.
This commit removes all the static occurrencies of the function
mbedtls_zeroize() in each of the individual .c modules. Instead the
function has been moved to utils.h that is included in each of the
modules.
Fix potential integer overflows in the following functions:
* mbedtls_md2_update() to be bypassed and cause
* mbedtls_cipher_update()
* mbedtls_ctr_drbg_reseed()
This overflows would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
Change the CMAC interface to match the mbedtls_md_hmac_xxxx() interface. This
changes the overall design of the CMAC interface to make it more consistent with
the existing HMAC interface, and will allow incremental updates of input data
rather than requiring all data to be presented at once, which is what the
current interface requires.