Goals:
* Build with common compilers with common options, so that we don't
miss a (potentially useful) warning only triggered with certain
build options.
* A previous commit removed -O0 test jobs, leaving only the one with
-m32. We have inline assembly that is disabled with -O0, falling
back to generic C code. This commit restores a test that runs the
generic C code on a 64-bit platform.
If Y was constructed through functions in this module, then Y->n == 0
iff Y->p == NULL. However we do not prevent filling mpi structures
manually, and zero may be represented with n=0 and p a valid pointer.
Most of the code can cope with such a representation, but for the
source of mbedtls_mpi_copy, this would cause an integer underflow.
Changing the test for zero from Y->p==NULL to Y->n==0 causes this case
to work at no extra cost.
The splitting of this test into two versions depending on whether SHA-1 was
allowed by the server was a mistake in
5d2511c4d4 - the test has nothing to do with
SHA-1 in the first place, as the server doesn't request a certificate from
the client so it doesn't matter if the server accepts SHA-1 or not.
While the whole script makes (often implicit) assumptions about the version of
GnuTLS used, generally speaking it should work out of the box with the version
packaged on our reference testing platform, which is Ubuntu 16.04 so far.
With the update from Jan 8 2020 (3.4.10-4ubuntu1.6), the patches for rejecting
SHA-1 in certificate signatures were backported, so we should avoid presenting
SHA-1 signed certificates to a GnuTLS peer in ssl-opt.sh.
When mbedtls_x509_crt_parse_path() checks each object in the supplied path, it only processes regular files. This change makes it also accept a symlink to a file. Fixes#3005.
This was observed to be a problem on Fedora/CentOS/RHEL systems, where the ca-bundle in the default location is actually a symlink.
The functions mbedtls_ctr_drbg_random() and
mbedtls_ctr_drbg_random_with_add() could return 0 if an AES function
failed. This could only happen with alternative AES
implementations (the built-in implementation of the AES functions
involved never fail), typically due to a failure in a hardware
accelerator.
Bug reported and fix proposed by Johan Uppman Bruce and Christoffer
Lauri, Sectra.
None of the test cases in tests_suite_memory_buffer_alloc actually
need MBEDTLS_MEMORY_DEBUG. Some have additional checks when
MBEDTLS_MEMORY_DEBUG but all are useful even without it. So enable
them all and #ifdef out the parts that require DEBUG.
The test case "Memory buffer small buffer" emits a message
"FATAL: verification of first header failed". In this test case, it's
actually expected, but it looks weird to see this message from a
passing test. Add a comment that states this explicitly, and modify
the test description to indicate that the failure is expected, and
change the test function name to be more accurate.
Fix#309
This issue has been reported by Tuba Yavuz, Farhaan Fowze, Ken (Yihang) Bai,
Grant Hernandez, and Kevin Butler (University of Florida) and
Dave Tian (Purdue University).
In AES encrypt and decrypt some variables were left on the stack. The value
of these variables can be used to recover the last round key. To follow best
practice and to limit the impact of buffer overread vulnerabilities (like
Heartbleed) we need to zeroize them before exiting the function.
The corner case tests were designed for 32 and 64 bit limbs
independently and performed only on the target platform. On the other
platform they are not corner cases anymore, but we can still exercise
them.
The corner case tests were designed for 64 bit limbs and failed on 32
bit platforms because the numbers in the test ended up being stored in a
different number of limbs and the function (correctly) returnd an error
upon receiving them.
In the case of *ret we might need to preserve a 0 value throughout the
loop and therefore we need an extra condition to protect it from being
overwritten.
The value of done is always 1 after *ret has been set and does not need
to be protected from overwriting. Therefore in this case the extra
condition can be removed.
The code relied on the assumptions that CHAR_BIT is 8 and that unsigned
does not have padding bits.
In the Bignum module we already assume that the sign of an MPI is either
-1 or 1. Using this, we eliminate the above mentioned dependency.
The signature of mbedtls_mpi_cmp_mpi_ct() meant to support using it in
place of mbedtls_mpi_cmp_mpi(). This meant full comparison functionality
and a signed result.
To make the function more universal and friendly to constant time
coding, we change the result type to unsigned. Theoretically, we could
encode the comparison result in an unsigned value, but it would be less
intuitive.
Therefore we won't be able to represent the result as unsigned anymore
and the functionality will be constrained to checking if the first
operand is less than the second. This is sufficient to support the
current use case and to check any relationship between MPIs.
The only drawback is that we need to call the function twice when
checking for equality, but this can be optimised later if an when it is
needed.
Multiplication is known to have measurable timing variations based on
the operands. For example it typically is much faster if one of the
operands is zero. Remove them from constant time code.