Call persistence "default" because that is genuinely the default that
applications should use if they don't know better. It's slightly
misleading in that the default persistence when you create a key is
volatile, not this: "default" is the default persistence for
persistent keys, not the default persistence for keys in general. But
we haven't found a better name.
Introduce the term "primary local storage" to designate the default
storage location.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This patch changes the compatibility API defined in crypto_compat.h
to static inline functions as the previous macro definitions were
causing issues for the C pre-processor when included in projects
which need to redefine the PSA function names. Making it static
inline function solves this problem neatly and also modern compilers
do a good job at inlining the function which makes the need for making
it a macro redundant.
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
Change the encoding of key types, EC curve families and DH group
families to make the low-order bit a parity bit (with even parity).
This ensures that distinct key type values always have a Hamming
distance of at least 2, which makes it easier for implementations to
resist single bit flips.
All key types now have an encoding on 32 bits where the bottom 16 bits
are zero. Change to using 16 bits only.
Keep 32 bits for key types in storage, but move the significant
half-word from the top to the bottom.
Likewise, change EC curve and DH group families from 32 bits out of
which the top 8 and bottom 16 bits are zero, to 8 bits only.
Reorder psa_core_key_attributes_t to avoid padding.
Remove the values of curve encodings that are based on the TLS registry
and include the curve size, keeping only the new encoding that merely
encodes a curve family in 8 bits.
Keep the old constant names as aliases for the new values and
deprecate the old names.
Define constants for ECC curve families and DH group families. These
constants have 0x0000 in the lower 16 bits of the key type.
Support these constants in the implementation and in the PSA metadata
tests.
Switch the slot management and secure element driver HAL tests to the
new curve encodings. This requires SE driver code to become slightly
more clever when figuring out the bit-size of an imported EC key since
it now needs to take the data size into account.
Switch some documentation to the new encodings.
Remove the macro PSA_ECC_CURVE_BITS which can no longer be implemented.
Change the representation of psa_ecc_curve_t and psa_dh_group_t from
the IETF 16-bit encoding to a custom 24-bit encoding where the upper 8
bits represent a curve family and the lower 16 bits are the key size
in bits. Families are based on naming and mathematical similarity,
with sufficiently precise families that no two curves in a family have
the same bit size (for example SECP-R1 and SECP-R2 are two different
families).
As a consequence, the lower 16 bits of a key type value are always
either the key size or 0.
Key types are now encoded through a category in the upper 4 bits (bits
28-31) and a type-within-category in the next 11 bits (bits 17-27),
with bit 16 unused and bits 0-15 only used for the EC curve or DH
group.
For symmetric keys, bits 20-22 encode the block size (0x0=stream,
0x3=8B, 0x4=16B).
Change the numerical encoding of values for symmetric key types to
have 0000 as the lower 16 bits. Now the lower 16 bits are only used
for key types that have a subtype (EC curve or DH group).
Whether a parameter should be const is an implementation detail of the
function, so don't declare a parameter of psa_hash_compare as
const. (This only applies to parameters themselves, not to objects
that pointer parameters points to.)
Rename some macros and functions related to signature which are
changing as part of the addition of psa_sign_message and
psa_verify_message.
perl -i -pe '%t = (
PSA_KEY_USAGE_SIGN => PSA_KEY_USAGE_SIGN_HASH,
PSA_KEY_USAGE_VERIFY => PSA_KEY_USAGE_VERIFY_HASH,
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE => PSA_SIGNATURE_MAX_SIZE,
PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE => PSA_SIGN_OUTPUT_SIZE,
psa_asymmetric_sign => psa_sign_hash,
psa_asymmetric_verify => psa_verify_hash,
); s/\b(@{[join("|", keys %t)]})\b/$t{$1}/ge' $(git ls-files . ':!:**/crypto_compat.h')
Move backward compatibility aliases to a separate header. Reserve
crypto_extra.h for implementation-specific extensions that we intend
to keep supporting.
This is better documentation for users. New users should simply ignore
backward compatibility aliases, and old users can look at
crypto_compat.h to see what is deprecated without bothering about new
features appearing in crypto_extra.h.
This facilitates maintenance because scripts such as
generate_psa_constants that want to ignore backward compability
aliases can simply exclude crypto_compat.h from their parsing.
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE was taking the maximum ECDSA key
size as the ECDSA signature size. Fix it to use the actual maximum
size of an ECDSA signature.
Document that passing 0 to a close/destroy function does nothing and
returns PSA_SUCCESS.
Although this was not written explicitly, the specification strongly
suggested that this would return PSA_ERROR_INVALID_HANDLE. While
returning INVALID_HANDLE makes sense, it was awkward for a very common
programming style where applications can store 0 in a handle variable
to indicate that the handle has been closed or has never been open:
applications had to either check if (handle != 0) before calling
psa_close_key(handle) or psa_destroy_key(handle), or ignore errors
from the close/destroy function. Now applications following this style
can just call psa_close_key(handle) or psa_destroy_key(handle).
Add a parameter to the p_validate_slot_number method to allow the
driver to modify the persistent data.
With the current structure of the core, the persistent data is already
updated. All it took was adding a way to modify it.
When registering a key in a secure element, go through the transaction
mechanism. This makes the code simpler, at the expense of a few extra
storage operations. Given that registering a key is typically very
rare over the lifetime of a device, this is an acceptable loss.
Drivers must now have a p_validate_slot_number method, otherwise
registering a key is not possible. This reduces the risk that due to a
mistake during the integration of a device, an application might claim
a slot in a way that is not supported by the driver.
Define a vendor-range within the the private use ranges in the IANA
registry. Provide recommendations for how to support vendor-defined
curves and groups.
If none of the inputs to a key derivation is a
PSA_KEY_DERIVATION_INPUT_SECRET passed with
psa_key_derivation_input_key(), forbid
psa_key_derivation_output_key(). It usually doesn't make sense to
derive a key object if the secret isn't itself a proper key.
Allow a direct input as the SECRET input step in a key derivation, in
addition to allowing DERIVE keys. This makes it easier for
applications to run a key derivation where the "secret" input is
obtained from somewhere else. This makes it possible for the "secret"
input to be empty (keys cannot be empty), which some protocols do (for
example the IV derivation in EAP-TLS).
Conversely, allow a RAW_DATA key as the INFO/LABEL/SALT/SEED input to a key
derivation, in addition to allowing direct inputs. This doesn't
improve security, but removes a step when a personalization parameter
is stored in the key store, and allows this personalization parameter
to remain opaque.
Add test cases that explore step/key-type-and-keyhood combinations.