If the key doesn't exist by the time this call is made
then the handle is invalid,
which means that PSA_ERROR_INVALID_HANDLE should be
returned rather than "does not exist"
It may be possible that the implementation runs out of
memory when exporting a key from storage or a secure
element. For example, it may not be possible to directly
move the data from storage to the caller, so the implementation
will have to buffer the material temporarily (an issue if dynamic
memory allocation scheme is used). For a large key
this is more likely to return.
It may be possible that an implementation does not
fetch key material until a command like
this is called and such an error may occur if an
off-chip secure storage dependency may have been wiped.
Note that PSA_ERROR_NOT_PERMITTED is not included
because I can't think of a scenario where you have
a valid key handle but aren't allowed to read the
attributes
Adjust the wording to permit multiple handles to a single key - closing
a handle does not necessarily release volatile memory associated with
the key, that only occurs when the last handle is closed.
- Describe the implementation defined behavior for opening multiple
keys, and provide a reference to the relevant section.
- Describe the use of INSUFFICENT_MEMORY error to indicate additional
implementation resource constaints.
- Clarify the distinction between DOES_NOT_EXIST and INVALID_HANDLE
error conditions.
PSA_KEY_ATTRIBUTES_INIT and psa_key_attributes_init weren't declared
in the API document, only defined in our implementation, but they are
referenced in the API document.
generate_key is a more classical name. The longer name was only
introduced to avoid confusion with getting a key from a generator,
which is key derivation, but we no longer use the generator
terminology so this reason no longer applies.
perl -i -pe 's/psa_generate_random_key/psa_generate_key/g' $(git ls-files)
“Tampering detected” was misleading because in the real world it can
also arise due to a software bug. “Corruption detected” is neutral and
more precisely reflects what can trigger the error.
perl -i -pe 's/PSA_ERROR_TAMPERING_DETECTED/PSA_ERROR_CORRUPTION_DETECTED/gi' $(git ls-files)
Parametrize finite-field Diffie-Hellman key types with a DH group
identifier, in the same way elliptic curve keys are parametrized with
an EC curve identifier.
Define the DH groups from the TLS registry (these are the groups from
RFC 7919).
Replicate the macro definitions and the metadata tests from elliptic
curve identifiers to DH group identifiers.
Define PSA_DH_GROUP_CUSTOM as an implementation-specific extension for
which domain parameters are used to specify the group.
Move psa_get_key_domain_parameters() and
psa_set_key_domain_parameters() out of the official API and declare
them to be implementation-specific extensions.
Expand the documentation of psa_set_key_domain_parameters() a bit to
explain how domain parameters are used.
Remove all mentions of domain parameters from the documentation of API
functions. This leaves DH and DSA effectively unusable.
Generators are mostly about key derivation (currently: only about key
derivation). "Generator" is not a commonly used term in cryptography.
So favor "derivation" as terminology.
This commit updates the function descriptions.
Generators are mostly about key derivation (currently: only about key
derivation). "Generator" is not a commonly used term in cryptography.
So favor "derivation" as terminology. Call a generator a key
derivation operation structure, since it behaves like other multipart
operation structures. Furthermore, the function names are not fully
consistent.
In this commit, I rename the functions to consistently have the prefix
"psa_key_derivation_". I used the following command:
perl -i -pe '%t = (
psa_crypto_generator_t => "psa_key_derivation_operation_t",
psa_crypto_generator_init => "psa_key_derivation_init",
psa_key_derivation_setup => "psa_key_derivation_setup",
psa_key_derivation_input_key => "psa_key_derivation_input_key",
psa_key_derivation_input_bytes => "psa_key_derivation_input_bytes",
psa_key_agreement => "psa_key_derivation_key_agreement",
psa_set_generator_capacity => "psa_key_derivation_set_capacity",
psa_get_generator_capacity => "psa_key_derivation_get_capacity",
psa_generator_read => "psa_key_derivation_output_bytes",
psa_generate_derived_key => "psa_key_derivation_output_key",
psa_generator_abort => "psa_key_derivation_abort",
PSA_CRYPTO_GENERATOR_INIT => "PSA_KEY_DERIVATION_OPERATION_INIT",
PSA_GENERATOR_UNBRIDLED_CAPACITY => "PSA_KEY_DERIVATION_UNLIMITED_CAPACITY",
); s/\b(@{[join("|", keys %t)]})\b/$t{$1}/ge' $(git ls-files)
In psa_import_key, change the order of parameters to pass
the pointer where the newly created handle will be stored last.
This is consistent with most other library functions that put inputs
before outputs.
In psa_generate_derived_key, change the order of parameters to pass
the pointer where the newly created handle will be stored last.
This is consistent with most other library functions that put inputs
before outputs.
Use individual setters for the id and lifetime fields of an attribute
structure, like the other attributes.
This commit updates the specification and adds an implementation of
the new setters.
Define a range of key identifiers for use by the application
(0..2^30-1), a range for use by implementations (2^30..2^31), and a
range that is reserved for future use (2^31..2^32-1).
Change the scope of key identifiers to be global, rather than
per lifetime. As a result, you now need to specify the lifetime of a
key only when creating it.
New macros PSA_AEAD_UPDATE_OUTPUT_SIZE, PSA_AEAD_FINISH_OUTPUT_SIZE
and PSA_AEAD_VERIFY_OUTPUT_SIZE to determine the output buffer sizes
for psa_aead_update(), psa_aead_finish() and psa_aead_verify().
Like psa_aead_finish(), psa_aead_verify() needs to produce output from
the last partial block of input if psa_aead_update() cannot produce
output byte by byte.
In psa_import_key and psa_copy_key, some information comes from the
key data (input buffer or source key) rather than from the attributes:
key size for import, key size and type and domain parameters for copy.
If an unused attribute is nonzero in the attribute structure, check
that it matches the correct value. This protects against application
errors.
There was a guarantee that psa_get_key_attributes() does not require a
subsequent psa_reset_key_attributes() to free resources as long as the
key was created with attributes having this property. This requirement
was hard to pin down because if a key is created with default
parameters, there are cases where it is difficult to ensure that the
domain parameters will be reported without allocating memory. So
remove this guarantee. Now the only case psa_reset_key_attributes() is
not required is if the attribute structure has only been modified with
certain specific setters.
Read extra data from the domain parameters in the attribute structure
instead of taking an argument on the function call.
Implement this for RSA key generation, where the public exponent can
be set as a domain parameter.
Add tests that generate RSA keys with various public exponents.