The documentation of HMAC_DRBG erroneously claimed that
mbedtls_hmac_drbg_set_entropy_len() had an impact on the initial
seeding. This is in fact not the case: mbedtls_hmac_drbg_seed() forces
the entropy length to its chosen value. Fix the documentation.
The documentation of CTR_DRBG erroneously claimed that
mbedtls_ctr_drbg_set_entropy_len() had an impact on the initial
seeding. This is in fact not the case: mbedtls_ctr_drbg_seed() forces
the initial seeding to grab MBEDTLS_CTR_DRBG_ENTROPY_LEN bytes of
entropy. Fix the documentation and rewrite the discussion of the
entropy length and the security strength accordingly.
Explain how MBEDTLS_CTR_DRBG_ENTROPY_LEN is set next to the security
strength statement, rather than giving a partial explanation (current
setting only) in the documentation of MBEDTLS_CTR_DRBG_ENTROPY_LEN.
NIST and many other sources call it a "personalization string", and
certainly not "device-specific identifiers" which is actually somewhat
misleading since this is just one of many things that might go into a
personalization string.
Improve the formatting and writing of the documentation based on what
had been done for CTR_DRBG.
Document the maximum size and nullability of some buffer parameters.
Document that a derivation function is used.
Document the security strength of the DRBG depending on the
compile-time configuration and how it is set up. In particular,
document how the nonce specified in SP 800-90A is set.
Mention how to link the ctr_drbg module with the entropy module.
* State explicit whether several numbers are in bits or bytes.
* Clarify whether buffer pointer parameters can be NULL.
* Explain the value of constants that are dependent on the configuration.
Add invasive checks that peek at the stored persistent data after some
successful import, generation or destruction operations and after
reinitialization to ensure that the persistent data in storage has the
expected content.
Add a parameter to the p_validate_slot_number method to allow the
driver to modify the persistent data.
With the current structure of the core, the persistent data is already
updated. All it took was adding a way to modify it.
When registering a key in a secure element, go through the transaction
mechanism. This makes the code simpler, at the expense of a few extra
storage operations. Given that registering a key is typically very
rare over the lifetime of a device, this is an acceptable loss.
Drivers must now have a p_validate_slot_number method, otherwise
registering a key is not possible. This reduces the risk that due to a
mistake during the integration of a device, an application might claim
a slot in a way that is not supported by the driver.
Define a vendor-range within the the private use ranges in the IANA
registry. Provide recommendations for how to support vendor-defined
curves and groups.
If none of the inputs to a key derivation is a
PSA_KEY_DERIVATION_INPUT_SECRET passed with
psa_key_derivation_input_key(), forbid
psa_key_derivation_output_key(). It usually doesn't make sense to
derive a key object if the secret isn't itself a proper key.
After passing some inputs, try getting one byte of output, just to
check that this succeeds (for a valid sequence of inputs) or fails
with BAD_STATE (for an invalid sequence of inputs). Either output a
1-byte key or a 1-byte buffer depending on the test data.
The test data was expanded as follows:
* Output key type (or not a key): same as the SECRET input if success
is expected, otherwise NONE.
* Expected status: PSA_SUCCESS after valid inputs, BAD_STATE after any
invalid input.
Allow a direct input as the SECRET input step in a key derivation, in
addition to allowing DERIVE keys. This makes it easier for
applications to run a key derivation where the "secret" input is
obtained from somewhere else. This makes it possible for the "secret"
input to be empty (keys cannot be empty), which some protocols do (for
example the IV derivation in EAP-TLS).
Conversely, allow a RAW_DATA key as the INFO/LABEL/SALT/SEED input to a key
derivation, in addition to allowing direct inputs. This doesn't
improve security, but removes a step when a personalization parameter
is stored in the key store, and allows this personalization parameter
to remain opaque.
Add test cases that explore step/key-type-and-keyhood combinations.
This commit only makes derive_input more flexible so that the key
derivation API can be tested with different key types and raw data for
each input step. The behavior of the test cases remains the same.
Exercise the library functions with calloc returning NULL for a size
of 0. Make this a separate job with UBSan (and ASan) to detect
places where we try to dereference the result of calloc(0) or to do
things like
buf = calloc(size, 1);
if (buf == NULL && size != 0) return INSUFFICIENT_MEMORY;
memcpy(buf, source, size);
which has undefined behavior when buf is NULL at the memcpy call even
if size is 0.
This is needed because other test components jobs either use the system
malloc which returns non-NULL on Linux and FreeBSD, or the
memory_buffer_alloc malloc which returns NULL but does not give as
useful feedback with ASan (because the whole heap is a single C
object).