Recall that in the default configuration, Mbed TLS provides access
digest implementations through two layers of indirection:
1) Call of MD API (e.g. mbedtls_md_update())
2) Call of function pointer from MD info structure
3) Actual digest implementation (e.g. mbedtls_sha256_update()).
Ideally, if only a single digest is enabled - say SHA-256 - then calling
mbedtls_md_update() should _directly_ jump to mbedtls_sha256_update(),
with both layers of indirection removed. So far, however, setting
MBEDTLS_MD_SINGLE_HASH will only remove the second - function pointer -
layer of indirection, while keeping the non-inlined stub implementations
of e.g. mbedtls_md_update() around.
This commit is a step towards allowing to define implementations of
the MD API as `static inline` in case we know that they are so small
that they should be defined in md.h and not in md.c.
In a nutshell, the approach is as follows: For an MD API function
mbedtls_md_xxx() that should be inlin-able, introduce its implementation
as a `static inline` wrapper `mbedtls_md_xxx_internal()` in md.h,
and then define mbedtls_md_xxx() either in md.h or in md.c, by just
calling mbedtls_md_xxx_internal().
Moving the implementations of those MD API functions that should be
inlinable to md.h requires the presence of both the MD info struct
and all specific digest wrapper functions in md.h, and this is what
this commit ensures, by moving them from md.c into a new internal
header file md_internal.h. Implementing the aforementioned wrappers for
those MD API that should be inlinable is left for subsequent commits.
This commit modifies check_config.h to check that precisely one
hash is enabled if MBEDTLS_MD_SINGLE_HASH is set.
This is not only a reasonable expectation, it is also necessary,
because test suites assume that if a digest is enabled, it is also
accessible through the MD abstraction layer.
This commit introduces the configuration option
MBEDTLS_MD_SINGLE_HASH
which can be used to hardcode support for a single digest algorithm
at compile-time, at the benefit of reduced code-size.
To use, it needs to be defined to evaluate to a macro of the form
MBEDTLS_MD_INFO_{DIGEST}, and macros MBEDTLS_MD_INFO_{DIGEST}_FIELD
must be defined, giving rise to the various aspects (name, type,
size, ...) of the chosen digest algorithm. MBEDTLS_MD_INFO_SHA256
provides an example, but other algorithms can be added if needed.
At the moment, the effect of using MBEDTLS_MD_SINGLE_HASH is that
the implementation of the MD API (e.g. mbedtls_md_update()) need no
longer to through the abstraction of the mbedtls_md_info structures
by calling their corresponding function pointers fields (akin to
virtual functions in C++), but the directly call the corresponding
core digest function (such as mbedtls_sha256_update()).
Therefore, MBEDTLS_MD_SINGLE_HASH so far removes the second layer
of indirection in the chain
User calls MD API -> MD API calls underlying digest impl'n
-> Core digest impl'n does the actual work,
but the first indirection remains, as the MD API remains untouched
and cannot yet be inlined. Studying to what extend inlining the
shortened MD API implementations would lead to further code-savings
is left for a later commit.
In builds enabling only a single MD digest, we want to be able to
implement the MD info getter functions by returning compile-time
constants matching the fields of the MD info structures used so far.
To avoid information duplication hardening maintainability, this
commit introduces the possibility of providing the various aspects
of a particular digest implementation by defining macros
MBEDTLS_MD_INFO_DIGEST_FIELD (e.g. MBEDTLS_MD_INFO_SHA256_SIZE)
and to generate the corresponding mbedtls_md_info instance from
this set of macros, via the new macro MBEDTLS_MD_INFO().
This way, we'll be able to switch between MD info based builds
and single-digest builds without information duplication.
This commit continues the introduction of the MD digest implementation
abstraction layer given by `mbedtls_md_handle_t` by adding getter
functions returning the various properties of an implementation
(e.g. name, digest type, digest size). For the existing implementation,
these are just structure field accesses; however, in configurations
hardcoding the choice of a fixed digest algorithm, we'll be able to
implement them as inline functions returning compile-time constants.
As has been previously done for ciphersuites, this commit introduces
a zero-cost abstraction layer around the type
mbedtls_md_info const *
whose valid values represent implementations of message digest algorithms.
Access to a particular digest implementation can be requested by name or
digest ID through the API mbedtls_md_info_from_xxx(), which either returns
a valid implementation or NULL, representing failure.
This commit replaces such uses of `mbedtls_md_info const *` by an abstract
type `mbedtls_md_handle_t` whose valid values represent digest implementations,
and which has a designated invalid value MBEDTLS_MD_INVALID_HANDLE.
The purpose of this abstraction layer is to pave the way for builds which
support precisely one digest algorithm. In this case, mbedtls_md_handle_t
can be implemented as a two-valued type, with one value representing the
invalid handle, and the unique valid value representing the unique enabled
digest.
Previously, this wasn't necessary because ecdh.h was included
through ssl.h, but now that this is no longer the case (because
ssl.h doesn't use ECDH), we have to include it explicitly.
Previously, ecp.h was included only if MBEDTLS_ECDH_C was set,
which broke the build in configurations using ECDSA, but not ECDH.
An example of such a config is configs/config-thread.h, which
uses ECJPAKE exclusively.
Moreover, the inclusion of ecdh.h isn't needed, because the header
only uses constants defined in the ECP module.
There is no apparent direct dependency, and the indirect dependency
through the RSA and legacy ECP modules is already encoded in the
chain
MBEDTLS_X509_USE_C
-> MBEDTLS_PK_PARSE_C
-> MBEDTLS_PK_C
-> MBEDTLS_RSA_C || MBEDTLS_ECP_C
-> MBEDTLS_BIGNUM_C
which will be modified to
MBEDTLS_X509_USE_C
-> MBEDTLS_PK_PARSE_C
-> MBEDTLS_PK_C
-> MBEDTLS_RSA_C || MBEDTLS_ECP_C || MBEDTLS_USE_TINYCRYPT
in which case MBEDTLS_BIGNUM_C is not needed for MBEDTLS_X509_USE_C
if only MBEDTLS_USE_TINYCRYPT is set, but not MBEDTLS_RSA_C or
MBEDTLS_ECP_C.
asn1.h uses uint8_t which is defined in stdint.h.
This wasn't caught earlier by the luck that whenever asn1.h
was included, another header was included earlier that did in
turn include stdint.h.
Remark: Including ecp.h is actually redundant because it's
also included from ecdh.h. However, it's good practice to
explicitly include header files that are being used directly,
and ssl.h does use MBEDTLS_ECP_MAX_BYTES which is defined in ecp.h.
ssl.h contains a dummy union of fields each large enough to
hold the PMS for a particular ciphersuite. In particular, for
pure-ECDH ciphersuites, it contains a field large enough to
hold the ECDH shared secret in any of the enabled curves.
So far, this upper bound was unconditionally chosen to be
MBEDTLS_ECP_MAX_BYTES from the ECP module.
With the introduction of TinyCrypt as an alternative implementation
for ECDH, we need to
- guard the use of MBEDTLS_ECP_MAX_BYTES because MBEDTLS_ECP_C
is no longer implied by the surrounding MBEDTLS_KEY_EXCHANGE_XXX
guards
- add another field which contains the maximum length of shared
ECDH secrets for curves supported by TinyCrypt.
mbedtls/ecp.h defines constants
MBEDTLS_ECP_PF_UNCOMPRESSED
MBEDTLS_ECP_PF_COMPRESSED
MBEDTLS_ECP_TLS_NAMED_CURVE
which regard the encoding of elliptic curves and curve point formats in TLS.
As such, they should be defined in the SSL namespace. Asides, this will help
replacing the legacy ECC crypto by alternative ECC implementations.
The PK-type MBEDTLS_PK_ECDSA isn't really used by the library.
Especially, when parsing a generic EC key, a PK context of type
MBEDTLS_PK_ECKEY will be requested. Hence, to drop in TinyCrypt
for the legacy-ECC implementation, the PK type that TinyCrypt
implements must be MBEDTLS_PK_ECKEY.
TinyCrypt should be used as a replacement of legacy ECC. In particular,
there shouldn't be any use of identifiers from the legacy ECC module.
So far, there's the configuration option
MBEDTLS_SSL_CONF_SINGLE_EC_GRP_ID
that's relevant if MBEDTLS_SSL_CONF_SINGLE_CURVE is set, and which in
this case must resolve to an identifier of type mbedtls_ecp_group_id
indicating which single curve to enable.
With the introduction of TinyCrypt, we must either change the type
of this option to mbedtls_uecc_group_id, or introduce a separate
compilation option.
In order to avoid type confusion, this commit follows tha latter
approach, introducing the configuration option
MBEDTLS_SSL_CONF_SINGLE_UECC_GRP_ID
that indicatesthe TinyCrypt group identifier of the single curve
to use (must be Secp256r1) if MBEDTLS_SSL_CONF_SINGLE_CURVE
and MBEDTLS_USE_TINYCRYPT are set.
* mbedtls-2.16: (21 commits)
Exclude DTLS 1.2 only with older OpenSSL
Document the rationale for the armel build
Switch armel build to -Os
Add a build on ARMv5TE in ARM mode
Add changelog entry for ARM assembly fix
bn_mul.h: require at least ARMv6 to enable the ARM DSP code
Changelog entry for test certificates update
Change worktree_rev to HEAD for rev-parse
Add ChangeLog entry for entropy_nv_seed test case fix
entropy_nv_seed: cope with SHA-256
entropy_nv_seed: clean up properly
Add ChangeLog entry for undefined behavior fix in test_suite_nist_kw
Don't call memset after calloc
Adapt ChangeLog
ECP restart: Don't calculate address of sub ctx if ctx is NULL
Update certificates to expire in 2029
Update soon to be expired crl
Test that a shared library build produces a dynamically linked executable
Test that the shared library build with CMake works
Add a test of MBEDTLS_CONFIG_FILE
...
Usually, compilers are clever enough to pick the best inlining
strategy, but in this instance, it appears that compiling on ARMC6,
the compilers inlines xxx_prf_yyy() and xxx_calc_finished_yyy()
even though it really shouldn't. Forbid inlining through the use
of __attribute__((noinline)).