The negotiated MFL is always the one suggested by the client, even
if the server has a smaller MFL configured locally. Hence, in the test
where the client asks for an MFL of 4096 bytes while the server locally
has an MFL of 512 bytes configured, the client will still send datagrams
of up to ~4K size.
By the standard (RFC 6066, Sect. 4), the Maximum Fragment Length (MFL)
extension limits the maximum record payload size, but not the maximum
datagram size. However, not inferring any limitations on the MTU when
setting the MFL means that a party has no means to dynamically inform
the peer about MTU limitations.
This commit changes the function ssl_get_remaining_payload_in_datagram()
to never return more than
MFL - { Total size of all records within the current datagram }
thereby limiting the MTU to MFL + { Maximum Record Expansion }.
The function ssl_free_buffered_record() frees a future epoch record, if
such is present. Previously, it was called in mbedtls_handshake_free(),
i.e. an unused buffered record would be cleared at the end of the handshake.
This commit moves the call to the function ssl_buffering_free() responsible
for freeing all buffering-related data, and which is called not only at
the end of the handshake, but at the end of every flight. In particular,
future record epochs won't be buffered across flight boundaries anymore,
and they shouldn't.
The previous code appended messages to flights only if their handshake type,
as derived from the first byte in the message, was different from
MBEDTLS_SSL_HS_HELLO_REQUEST. This check should only be performed
for handshake records, while CCS records should immediately be appended.
In SSLv3, the client sends a NoCertificate alert in response to
a CertificateRequest if it doesn't have a CRT. This previously
lead to failure in ssl_write_handshake_msg() which only accepted
handshake or CCS records.
Depending on the settings of the local machine, gnutls-cli will either try
IPv4 or IPv6 when trying to connect to localhost. With TLS, whatever it tries
first, it will notice if any failure happens and try the other protocol if
necessary. With DTLS it can't do that. Unfortunately for now there isn't
really any good way to specify an address and hostname independently, though
that might come soon: https://gitlab.com/gnutls/gnutls/issues/344
A work around is to specify an address directly and then use --insecure to
ignore certificate hostname mismatch; that is OK for tests that are completely
unrelated to certificate verification (such as the recent fragmenting tests)
but unacceptable for others.
For that reason, don't specify a default hostname for gnutls-cli, but instead
let each test choose between `--insecure 127.0.0.1` and `localhost` (or
`--insecure '::1'` if desired).
Alternatives include:
- having test certificates with 127.0.0.1 as the hostname, but having an IP as
the CN is unusual, and we would need to change our test certs;
- have our server open two sockets under the hood and listen on both IPv4 and
IPv6 (that's what gnutls-serv does, and IMO it's a good thing) but that
obviously requires development and testing (esp. for windows compatibility)
- wait for a newer version of GnuTLS to be released, install it on the CI and
developer machines, and use that in all tests - quite satisfying but can't
be done now (and puts stronger requirements on test environment).
The previous code appended messages to flights only if their handshake type,
as derived from the first byte in the message, was different from
MBEDTLS_SSL_HS_HELLO_REQUEST. This check should only be performed
for handshake records, while CCS records should immediately be appended.
In SSLv3, the client sends a NoCertificate alert in response to
a CertificateRequest if it doesn't have a CRT. This previously
lead to failure in ssl_write_handshake_msg() which only accepted
handshake or CCS records.
From Hanno:
When a server replies to a cookieless ClientHello with a HelloVerifyRequest,
it is supposed to reset the connection and wait for a subsequent ClientHello
which includes the cookie from the HelloVerifyRequest.
In testing environments, it might happen that the reset of the server
takes longer than for the client to replying to the HelloVerifyRequest
with the ClientHello+Cookie. In this case, the ClientHello gets lost
and the client will need retransmit. This may happen even if the underlying
datagram transport is reliable.
Previous commits introduced the field `total_bytes_buffered`
which is supposed to keep track of the cumulative size of
all heap allocated buffers used for the purpose of reassembly
and/or buffering of future messages.
However, the buffering of future epoch records were not reflected
in this field so far. This commit changes this, adding the length
of a future epoch record to `total_bytes_buffered` when it's buffered,
and subtracting it when it's freed.
This commit adds a static function ssl_buffer_make_space() which
takes a buffer size as an argument and attempts to free as many
future message bufffers as necessary to ensure that the desired
amount of buffering space is available without violating the
total buffering limit set by MBEDTLS_SSL_DTLS_MAX_BUFFERING.
This commit continues commit 47db877 by removing resend guards in the
ssl-opt.sh tests 'DTLS fragmenting: proxy MTU, XXX' which sometimes made
the tests fail in case the log showed a resend from the client.
See 47db877 for more information.
Previously, the UDP proxy could only remember one delayed message
for future transmission; if two messages were delayed in succession,
without another one being normally forwarded in between,
the message that got delayed first would be dropped.
This commit enhances the UDP proxy to allow to delay an arbitrary
(compile-time fixed) number of messages in succession.
If the next expected handshake message can't be reassembled because
buffered future messages have already used up too much of the available
space for buffering, free those future message buffers in order to
make space for the reassembly, starting with the handshake message
that's farthest in the future.