This change fixes a regression introduced by an earlier commit that
modified x509_crt_verify_top() to ensure that valid certificates
that are after past or future valid in the chain are processed. However
the change introduced a change in behaviour that caused the
verification flags MBEDTLS_X509_BADCERT_EXPIRED and
MBEDTLS_BADCERT_FUTURE to always be set whenever there is a failure in
the verification regardless of the cause.
The fix maintains both behaviours:
* Ensure that valid certificates after future and past are verified
* Ensure that the correct verification flags are set.
To do so, a temporary pointer to the first future or past valid
certificate is maintained while traversing the chain. If a truly valid
certificate is found then that one is used, otherwise if no valid
certificate is found and the end of the chain is reached, the program
reverts back to using the future or past valid certificate.
Add a test to ssl-opt.sh to ensure that in DTLS a 6 byte record counter
is compared in ssl_check_ctr_renegotiate() instead of a 8 byte one as in
the TLS case. Because currently there are no testing facilities to check
that renegotiation routines are triggered after X number of input/output
messages, the test consists on setting a renegotiation period that
cannot be represented in 6 bytes, but whose least-significant byte is 2.
If the library behaves correctly, the renegotiation routines will be
executed after two exchanged.
Fix an incorrect condition in ssl_check_ctr_renegotiate() that compared
64 bits of record counter instead of 48 bits as described in RFC 6347
Section 4.3.1. This would cause the function's return value to be
occasionally incorrect and the renegotiation routines to be triggered
at unexpected times.
This patch modifies the function mbedtls_x509_crl_parse() to ensure
that a CRL in PEM format with trailing characters after the footer does
not result in the execution of an infinite loop.
Fix potential integer overflows in the function mbedtls_base64_decode().
This overflow would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
Fix potential integer overflows in the following functions:
* mbedtls_md2_update() to be bypassed and cause
* mbedtls_cipher_update()
* mbedtls_ctr_drbg_reseed()
This overflows would mainly be exploitable in 32-bit systems and could
cause buffer bound checks to be bypassed.
This PR fixes a number of unused variable/function compilation warnings
that arise when using a config.h that does not define the macro
MBEDTLS_PEM_PARSE_C.
Changes use of mklink in Windows test builds, to create junctions instead of
directory symbolic links. This removes the need for an elevated command prompt
when running cmake to create the Visual Studio project files.
Fixes many typos, and errors in comments.
* Clarifies many comments
* Grammar correction in config.pl help text
* Removed comment about MBEDTLS_X509_EXT_NS_CERT_TYPE.
* Comment typo fix (Dont => Don't)
* Comment typo fix (assure => ensure)
* Comment typo fix (byes => bytes)
* Added citation for quoted standard
* Comment typo fix (one complement => 1's complement)
The is some debate about whether to prefer "one's complement", "ones'
complement", or "1's complement". The more recent RFCs related to TLS
(RFC 6347, RFC 4347, etc) use " 1's complement", so I followed that
convention.
* Added missing ")" in comment
* Comment alignment
* Incorrect comment after #endif
For a start, they don't even compile with Visual Studio due to strcasecmp
being missing. Secondly, on Windows Perl scripts aren't executable and have
to be run using the Perl interpreter directly; thankfully CMake is able to
find cygwin Perl straight away without problems.
In a USENIX WOOT '16 paper the authors warn about a security risk
of random Initialisation Vectors (IV) repeating values.
The MBEDTLS_SSL_AEAD_RANDOM_IV feature is affected by this risk and
it isn't compliant with RFC5116. Furthermore, strictly speaking it
is a different cipher suite from the TLS (RFC5246) point of view.
Removing the MBEDTLS_SSL_AEAD_RANDOM_IV feature to resolve the above
problems.
Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky and Philipp
Jovanovic, "Nonce-Disrespecting Adversaries: Practical Forgery Attacks
on GCM in TLS", USENIX WOOT '16
In a USENIX WOOT '16 paper the authors exploit implementation
mistakes that cause Initialisation Vectors (IV) to repeat. This
did not happen in mbed TLS, and this test makes sure that this
won't happen in the future either.
A new test option is introduced to ssl-opt.sh that checks the server
and client logs for a pattern and fails in case there are any
duplicates in the lines following the matching ones. (This is
necessary because of the structure of the logging)
Added a test case as well to utilise the new option. This test forces
the TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384 ciphersuite to make the
client and the server use an AEAD cipher.
Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky and Philipp
Jovanovic, "Nonce-Disrespecting Adversaries: Practical Forgery Attacks
on GCM in TLS", USENIX WOOT '16
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.