Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.
The library/net.c and its corresponding include/mbedtls/net.h file are
renamed to library/net_sockets.c and include/mbedtls/net_sockets.h
respectively. This is to avoid naming collisions in projects which also
have files with the common name 'net'.
The PKCS#1 standard says nothing about the relation between P and Q
but many libraries guarantee P>Q and mbed TLS did so too in earlier
versions.
This commit restores this behaviour.
Fix implementation and documentation missmatch for the function
arguments to mbedtls_gcm_finish(). Also, removed redundant if condition
that always evaluates to true.
Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.
Due to inconsistent freeing strategy in pkparse.c the sample mutex
implementation in threading.c could lead to undefined behaviour by
destroying the same mutex several times.
This fix prevents mutexes from being destroyed several times in the
sample threading implementation.
Fixes the test suites to consistently use mbedtls_fprintf to output to
stdout or stderr.
Also redirects output from the tests to /dev/null to avoid confusing
output if the test suite code or library outputs anything to stdout.
The sample applications programs/pkey/cert_req.c and
programs/pkey/cert_write.c use the library functions
mbedtls_pk_write_csr_pem() and mbedtls_pk_write_crt_pem() respectively which
are dependent on the configuration option MBEDTLS_PEM_WRITE_C. If the option
isn't defined the build breaks.
This change adds the compilation condition MBEDTLS_PEM_WRITE_C to these
sample application.
Certificates with unsupported algorithms in the certificate chain
prevented verification even if a certificate before the unsupported
ones was already trusted.
We change the behaviour to ignoring every certificate with unknown
(unsupported) signature algorithm oid when parsing the certificate
chain received from the peer.