* origin/mbedtls-2.7:
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
Allow TODO in code
Use the docstring in the command line help
* origin/pr/2740:
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
* origin/mbedtls-2.7:
Changelog entry for HAVEGE fix
Prevent building the HAVEGE module on platforms where it doesn't work
Fix misuse of signed ints in the HAVEGE module
The failure of mbedtls_md was not checked in one place. This could have led
to an incorrect computation if a hardware accelerator failed. In most cases
this would have led to the key exchange failing, so the impact would have been
a hard-to-diagnose error reported in the wrong place. If the two sides of the
key exchange failed in the same way with an output from mbedtls_md that was
independent of the input, this could have led to an apparently successful key
exchange with a predictable key, thus a glitching md accelerator could have
caused a security vulnerability.
Record the commit ID in addition to the symbolic name of the version
being tested. This makes it easier to figure out what has been
compared when reading logs that don't always indicate explicitly what
things like HEAD are.
This makes the title of HTML reports somewhat verbose, but I think
that's a small price to pay.
* origin/pr/2733:
Changelog entry for HAVEGE fix
Prevent building the HAVEGE module on platforms where it doesn't work
Fix misuse of signed ints in the HAVEGE module
If int is not capable of storing as many values as unsigned, the code
may generate a trap value. If signed int and unsigned int aren't
32-bit types, the code may calculate meaningless values.
The elements of the HAVEGE state are manipulated with bitwise
operations, with the expectations that the elements are 32-bit
unsigned integers (or larger). But they are declared as int, and so
the code has undefined behavior. Clang with Asan correctly points out
some shifts that reach the sign bit.
Use unsigned int internally. This is technically an aliasing violation
since we're accessing an array of `int` via a pointer to `unsigned
int`, but since we don't access the array directly inside the same
function, it's very unlikely to be compiled in an unintended manner.
* restricted/pr/581:
Remove unnecessary empty line
Add a test for signing content with a long ECDSA key
Add documentation notes about the required size of the signature buffers
Add missing MBEDTLS_ECP_C dependencies in check_config.h
Change size of preallocated buffer for pk_sign() calls
* origin/pr/2713:
programs: Make `make clean` clean all programs always
ssl_tls: Enable Suite B with subset of ECP curves
windows: Fix Release x64 configuration
timing: Remove redundant include file
net_sockets: Fix typo in net_would_block()
* origin/pr/2320:
Clarify ChangeLog entry for fix to #1628
Add Changelog entry for clang test-ref-configs.pl fix
Enable more compiler warnings in tests/Makefile
Change file scoping of test helpers.function
If `make TEST_CPP:=1` is run, and then `make clean` (as opposed to `make
TEST_CPP:=1 clean`), the cpp_dummy_build will be left behind after the
clean. Make `make clean more convenient to use by removing programs that
could be generated from any configuration, not just the active one.
Fixes#1862
Inherit PlatformToolset from the project configuration. This allow the
project to configure PlatformToolset, and aligns the Release x64 build
with other build types.
Fixes#1430
The test suites `test_suite_gcm.aes{128,192,256}_en.data` contains
numerous NIST test vectors for AES-*-GCM against which the GCM
API mbedtls_gcm_xxx() is tested.
However, one level higher at the cipher API, no tests exist which
exercise mbedtls_cipher_auth_{encrypt/decrypt}() for GCM ciphers,
although test_suite_cipher.function contains the test auth_crypt_tv
which does precisely that and is already used e.g. in
test_suite_cipher.ccm.
This commit replicates the test vectors from
test_suite_gcm.aes{128,192,256}_en.data in test_suite_cipher.gcm.data
and adds a run of auth_crypt_tv for each of them.
The conversion was mainly done through the sed command line
```
s/gcm_decrypt_and_verify:\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):
\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\)/auth_crypt_tv:
\1:\2:\4:\5:\3:\7:\8:\9/
```
For unit tests and sample programs, CFLAGS=-m32 is enough to get a
32-bit build, because these programs are all compiled directly
from *.c to the executable in one shot. But with makefile rules that
first build object files and then link them, LDFLAGS=-m32 is also
needed.
* origin/pr/2482:
Document support for MD2 and MD4 in programs/x509/cert_write
Correct name of X.509 parsing test for well-formed, ill-signed CRT
Add test cases exercising successful verification of MD2/MD4/MD5 CRT
Add test case exercising verification of valid MD2 CRT
Add MD[245] test CRTs to tree
Add instructions for MD[245] test CRTs to tests/data_files/Makefile
Add suppport for MD2 to CSR and CRT writing example programs
Convert further x509parse tests to use lower-case hex data
Correct placement of ChangeLog entry
Adapt ChangeLog
Use SHA-256 instead of MD2 in X.509 CRT parsing tests
Consistently use lower case hex data in X.509 parsing tests
* origin/pr/2498:
Adapt ChangeLog
ssl_server2: Fail gracefully if no PEM-encoded CRTs are available
ssl_server2: Skip CA setup if `ca_path` or `ca_file` argument "none"
ssl_client2: Fail gracefully if no PEM-encoded CRTs are available
ssl_client2: Skip CA setup if `ca_path` or `ca_file` argument "none"
To prevent dropping the same message over and over again, the UDP proxy
test application programs/test/udp_proxy _logically_ maintains a mapping
from records to the number of times the record has already been dropped,
and stops dropping once a configurable threshold (currently 2) is passed.
However, the actual implementation deviates from this logical view
in two crucial respects:
- To keep the implementation simple and independent of
implementations of suitable map interfaces, it only counts how
many times a record of a given _size_ has been dropped, and
stops dropping further records of that size once the configurable
threshold is passed. Of course, this is not fail-proof, but a
good enough approximation for the proxy, and it allows to use
an inefficient but simple array for the required map.
- The implementation mixes datagram lengths and record lengths:
When deciding whether it is allowed to drop a datagram, it
uses the total datagram size as a lookup index into the map
counting the number of times a package has been dropped. However,
when updating this map, the UDP proxy traverses the datagram
record by record, and updates the mapping at the level of record
lengths.
Apart from this inconsistency, the current implementation suffers
from a lack of bounds checking for the parsed length of incoming
DTLS records that can lead to a buffer overflow when facing
malformed records.
This commit removes the inconsistency in datagram vs. record length
and resolves the buffer overflow issue by not attempting any dissection
of datagrams into records, and instead only counting how often _datagrams_
of a particular size have been dropped.
There is only one practical situation where this makes a difference:
If datagram packing is used by default but disabled on retransmission
(which OpenSSL has been seen to do), it can happen that we drop a
datagram in its initial transmission, then also drop some of its records
when they retransmitted one-by-one afterwards, yet still keeping the
drop-counter at 1 instead of 2. However, even in this situation, we'll
correctly count the number of droppings from that point on and eventually
stop dropping, because the peer will not fall back to using packing
and hence use stable record lengths.
Due to the way the current PK API works, it may have not been clear
for the library clients, how big output buffers they should pass
to the signing functions. Depending on the key type they depend on
MPI or EC specific compile-time constants.
Inside the library, there were places, where it was assumed that
the MPI size will always be enough, even for ECDSA signatures.
However, for very small sizes of the MBEDTLS_MPI_MAX_SIZE and
sufficiently large key, the EC signature could exceed the MPI size
and cause a stack overflow.
This test establishes both conditions -- small MPI size and the use
of a long ECDSA key -- and attempts to sign an arbitrary file.
This can cause a stack overvlow if the signature buffers are not
big enough, therefore the test is performed for an ASan build.