All symmetric cipher algorithms and hash algorithms now include support
for a POLARSSL_XXX_ALT flag that prevents the definition of the
algorithm context structure and all 'core' functions.
(cherry picked from commit 4087c47043)
PKCS#8 encrypted key file support has been added to x509parse_key() with
support for some PCKS#12 PBE functions (pbeWithSHAAnd128BitRC4,
pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHAAnd2-KeyTripleDES-CBC)
(cherry picked from commit cf6e95d9a8)
Conflicts:
scripts/generate_errors.pl
Rationale: The HAVEGE random generator has too many caveats to be a
standard generator that people rely on. The HAVEGE random generator is not
suitable for virtualized environments. In addition the HAVEGE random
generator is dependent on timing and specific processor traits that
cannot be guaranteed by default on compile time.
Our advice: only use HAVEGE as an additional random source for your
entropy pool, never as your primary source.
(cherry picked from commit 08f06cf49f)
code selection
The base RFC 4279 DHE-PSK ciphersuites are now supported and added.
The SSL code cuts out code not relevant for defined key exchange methods
A new OID module has been created that contains the main OID searching
functionality based on type-dependent arrays. A base type is used to
contain the basic values (oid_descriptor_t) and that type is extended to
contain type specific information (like a pk_alg_t).
As a result the rsa sign and verify function prototypes have changed. They
now expect a md_type_t identifier instead of the removed RSA_SIG_XXX
defines.
All OID definitions have been moved to oid.h
All OID matching code is in the OID module.
The RSA PKCS#1 functions cleaned up as a result and adapted to use the
MD layer.
The SSL layer cleanup up as a result and adapted to use the MD layer.
The X509 parser cleaned up and matches OIDs in certificates with new
module and adapted to use the MD layer.
The X509 writer cleaned up and adapted to use the MD layer.
Apps and tests modified accordingly
Made all modifications to include Ephemeral Elliptic Curve Diffie
Hellman ciphersuites into the existing SSL/TLS modules. All basic
handling of the ECDHE-ciphersuites (TLS_ECDHE_RSA_WITH_NULL_SHA,
TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA)
has been included.
If the define POLARSSL_SSL_SRV_SUPPORT_SSLV2_CLIENT_HELLO is enabled,
the SSL Server module can handle the old SSLv2 Client Hello messages.
It has been updated to deny SSLv2 Client Hello messages during
renegotiation.
The flag POLARSSL_SSL_ALERT_MESSAGES switched between enabling and
disabling the sending of alert messages that give adversaries intel
about the result of their action. PolarSSL can still communicate with
other parties if they are disabled, but debugging of issues might be
harder.
Enable a dummy error function to make use of error_strerror() in
third party libraries easier.
Disable if you run into name conflicts and want to really remove the
error_strerror()
- The error codes have been remapped and combining error codes is now done with a PLUS instead of an OR as error codes used are negative.
- Descriptions to all error codes have been added.
- Generation script for error.c has been created to automatically generate error.c from the available error definitions in the headers.