/* BEGIN_HEADER */ #include #include "mbedtls/pk.h" #include "mbedtls/pk_info.h" /* For error codes */ #include "mbedtls/ecp.h" #include "mbedtls/rsa.h" #include #include static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ); #define RSA_KEY_SIZE 512 #define RSA_KEY_LEN 64 static int pk_genkey( mbedtls_pk_context *pk ) { ((void) pk); #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME) if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_RSA ) return mbedtls_rsa_gen_key( mbedtls_pk_rsa( *pk ), rnd_std_rand, NULL, RSA_KEY_SIZE, 3 ); #endif #if defined(MBEDTLS_ECP_C) if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY || mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY_DH || mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECDSA ) { int ret; if( ( ret = mbedtls_ecp_group_load( &mbedtls_pk_ec( *pk )->grp, MBEDTLS_ECP_DP_SECP192R1 ) ) != 0 ) return( ret ); return mbedtls_ecp_gen_keypair( &mbedtls_pk_ec( *pk )->grp, &mbedtls_pk_ec( *pk )->d, &mbedtls_pk_ec( *pk )->Q, rnd_std_rand, NULL ); } #endif return( -1 ); } #if defined(MBEDTLS_RSA_C) static int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len ) { return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx, NULL, NULL, mode, olen, input, output, output_max_len ) ); } static int mbedtls_rsa_sign_func( void *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ) ); } static size_t mbedtls_rsa_key_len_func( void *ctx ) { return( ((const mbedtls_rsa_context *) ctx)->len ); } /* Prepare a raw RSA context with a small random key. */ static void pk_rsa_prepare( mbedtls_rsa_context *raw ) { mbedtls_rsa_init( raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE ); #if defined(MBEDTLS_GENPRIME) mbedtls_rsa_gen_key( raw, rnd_std_rand, NULL, RSA_KEY_SIZE, 3 ); #endif } /* Test the RSA context tested_ctx by comparing its operation with a generic RSA context which is initialized with the key in raw. */ static void pk_rsa_match( mbedtls_rsa_context *raw, mbedtls_pk_context *tested_ctx, int sign_ret, int verify_ret, int encrypt_ret, int decrypt_ret, int debug_ret ) { mbedtls_pk_context basic_ctx; mbedtls_pk_debug_item dbg_items[10]; unsigned char hash[50], sig[1000]; unsigned char msg[50], ciph[1000], test[1000]; size_t sig_len, ciph_len, test_len; memset( hash, 0x2a, sizeof( hash ) ); memset( sig, 0, sizeof( sig ) ); memset( msg, 0x2a, sizeof( msg ) ); memset( ciph, 0, sizeof( ciph ) ); memset( test, 0, sizeof( test ) ); /* Initialize basic PK RSA context with raw key */ mbedtls_pk_init( &basic_ctx ); TEST_ASSERT( mbedtls_pk_setup( &basic_ctx, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); TEST_ASSERT( mbedtls_rsa_copy( mbedtls_pk_rsa( basic_ctx ), raw ) == 0 ); /* Test administrative functions */ TEST_ASSERT( mbedtls_pk_can_do( tested_ctx, MBEDTLS_PK_RSA ) ); TEST_ASSERT( mbedtls_pk_get_bitlen( tested_ctx ) == RSA_KEY_SIZE ); TEST_ASSERT( mbedtls_pk_get_len( tested_ctx ) == RSA_KEY_LEN ); TEST_ASSERT( mbedtls_pk_get_signature_size( tested_ctx ) == RSA_KEY_LEN ); /* Test signature */ TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, &sig_len, rnd_std_rand, NULL ) == sign_ret ); if( sign_ret == 0 ) { #if SIZE_MAX > UINT_MAX TEST_ASSERT( mbedtls_pk_sign( tested_ctx, MBEDTLS_MD_NONE, hash, (size_t)-1, NULL, NULL, rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ TEST_ASSERT( sig_len == RSA_KEY_LEN ); TEST_ASSERT( mbedtls_pk_verify( &basic_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len ) == 0 ); } /* Test verification */ TEST_ASSERT( mbedtls_pk_sign( &basic_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, &sig_len, rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len ) == verify_ret ); if( verify_ret == 0 ) { TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len - 1 ) == MBEDTLS_ERR_RSA_VERIFY_FAILED ); sig[sig_len-1] ^= 1; TEST_ASSERT( mbedtls_pk_verify( tested_ctx, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len ) == MBEDTLS_ERR_RSA_INVALID_PADDING ); } /* Test encryption */ TEST_ASSERT( mbedtls_pk_encrypt( tested_ctx, msg, sizeof( msg ), ciph, &ciph_len, sizeof( ciph ), rnd_std_rand, NULL ) == encrypt_ret ); if( encrypt_ret == 0 ) { TEST_ASSERT( mbedtls_pk_decrypt( &basic_ctx, ciph, ciph_len, test, &test_len, sizeof( test ), rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( test_len == sizeof( msg ) ); TEST_ASSERT( memcmp( test, msg, test_len ) == 0 ); } /* Test decryption */ TEST_ASSERT( mbedtls_pk_encrypt( &basic_ctx, msg, sizeof( msg ), ciph, &ciph_len, sizeof( ciph ), rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_decrypt( tested_ctx, ciph, ciph_len, test, &test_len, sizeof( test ), rnd_std_rand, NULL ) == decrypt_ret ); if( decrypt_ret == 0 ) { TEST_ASSERT( test_len == sizeof( msg ) ); TEST_ASSERT( memcmp( test, msg, test_len ) == 0 ); } /* Test debug */ TEST_ASSERT( mbedtls_pk_debug( tested_ctx, dbg_items ) == debug_ret ); exit: mbedtls_pk_free( &basic_ctx ); } #define OPAQUE_MOCK_CAN_DO MBEDTLS_PK_RSA #define OPAQUE_MOCK_BITLEN 'b' #define OPAQUE_MOCK_MD_ALG MBEDTLS_MD_SHA256 #define OPAQUE_MOCK_SIGNATURE_SIZE 4 #define OPAQUE_MOCK_GOOD_SIGNATURE "good" static const unsigned char opaque_mock_hash[8] = "HASHhash"; static const unsigned char opaque_mock_reference_input[10] = "INPUTinput"; static const unsigned char opaque_mock_reference_encrypted[12] = "C:JOQVUjoqvu"; static const unsigned char opaque_mock_reference_decrypted[12] = "P:HMOTShmots"; static char opaque_mock_fake_ctx = 'c'; static mbedtls_pk_debug_item opaque_mock_pk_debug_item; static int opaque_mock_debug_called_correctly = 0; static int opaque_mock_free_called_correctly = 0; static size_t opaque_mock_get_bitlen( const void *ctx ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); return( OPAQUE_MOCK_BITLEN ); exit: return( INT_MIN ); } static int opaque_mock_can_do( const void *ctx, mbedtls_pk_type_t type ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); return( type == OPAQUE_MOCK_CAN_DO ); exit: return( INT_MIN ); } static int opaque_mock_verify_func( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG ); TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) ); TEST_ASSERT( hash == opaque_mock_hash ); if( sig_len != OPAQUE_MOCK_SIGNATURE_SIZE ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); if( memcmp( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE ) ) return( MBEDTLS_ERR_PK_INVALID_SIGNATURE ); return( 0 ); exit: return( INT_MIN ); } static int opaque_mock_sign_func( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); TEST_ASSERT( md_alg == OPAQUE_MOCK_MD_ALG ); TEST_ASSERT( hash_len == sizeof( opaque_mock_hash ) ); TEST_ASSERT( hash == opaque_mock_hash ); memcpy( sig, OPAQUE_MOCK_GOOD_SIGNATURE, OPAQUE_MOCK_SIGNATURE_SIZE ); *sig_len = OPAQUE_MOCK_SIGNATURE_SIZE; (void) f_rng; (void) p_rng; return( 0 ); exit: return( INT_MIN ); } static int opaque_mock_decrypt_func( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) ); TEST_ASSERT( !memcmp( input, opaque_mock_reference_input, sizeof( opaque_mock_reference_input ) ) ); if( osize < sizeof( opaque_mock_reference_decrypted ) ) return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); *olen = sizeof( opaque_mock_reference_decrypted ); memcpy( output, opaque_mock_reference_decrypted, sizeof( opaque_mock_reference_decrypted ) ); (void) f_rng; (void) p_rng; return( 0 ); exit: return( INT_MIN ); } static int opaque_mock_encrypt_func( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); TEST_ASSERT( ilen == sizeof( opaque_mock_reference_input ) ); TEST_ASSERT( !memcmp( input, opaque_mock_reference_input, sizeof( opaque_mock_reference_input ) ) ); if( osize < sizeof( opaque_mock_reference_encrypted ) ) return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); *olen = sizeof( opaque_mock_reference_encrypted ); memcpy( output, opaque_mock_reference_encrypted, sizeof( opaque_mock_reference_encrypted ) ); (void) f_rng; (void) p_rng; return( 0 ); exit: return( INT_MIN ); } static int opaque_mock_check_pair_func( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv ) { TEST_ASSERT( prv->pk_ctx == &opaque_mock_fake_ctx ); if( mbedtls_pk_get_type( pub ) != MBEDTLS_PK_RSA ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); return( 0 ); exit: return( INT_MIN ); } static void *opaque_mock_ctx_alloc_func( void ) { return( &opaque_mock_fake_ctx ); } static void *opaque_mock_ctx_alloc_fail( void ) { return( NULL ); } static void opaque_mock_ctx_free_func( void *ctx ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); opaque_mock_free_called_correctly = 1; exit: return; } static void opaque_mock_debug_func( const void *ctx, mbedtls_pk_debug_item *items ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); TEST_ASSERT( items == &opaque_mock_pk_debug_item ); opaque_mock_debug_called_correctly = 1; exit: return; } static size_t opaque_mock_signature_size_func( const void *ctx ) { TEST_ASSERT( ctx == &opaque_mock_fake_ctx ); return( OPAQUE_MOCK_SIGNATURE_SIZE ); exit: return( -1 ); } #endif /* MBEDTLS_RSA_C */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_PK_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void pk_utils( int type, int size, int len, char *name ) { mbedtls_pk_context pk; mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk ) == 0 ); TEST_ASSERT( (int) mbedtls_pk_get_type( &pk ) == type ); TEST_ASSERT( mbedtls_pk_can_do( &pk, type ) ); TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == (unsigned) size ); TEST_ASSERT( mbedtls_pk_get_len( &pk ) == (unsigned) len ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */ void mbedtls_pk_check_pair( char *pub_file, char *prv_file, int ret ) { mbedtls_pk_context pub, prv, alt; mbedtls_pk_init( &pub ); mbedtls_pk_init( &prv ); mbedtls_pk_init( &alt ); TEST_ASSERT( mbedtls_pk_parse_public_keyfile( &pub, pub_file ) == 0 ); TEST_ASSERT( mbedtls_pk_parse_keyfile( &prv, prv_file, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &prv ) == ret ); #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_RSA_ALT_SUPPORT) if( mbedtls_pk_get_type( &prv ) == MBEDTLS_PK_RSA ) { TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, mbedtls_pk_rsa( prv ), mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &alt ) == ret ); } #endif mbedtls_pk_free( &pub ); mbedtls_pk_free( &prv ); mbedtls_pk_free( &alt ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_test_vec( char *message_hex_string, int digest, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex_str, int result ) { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; int msg_len; mbedtls_pk_init( &pk ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); msg_len = unhexify( message_str, message_hex_string ); unhexify( result_str, result_hex_str ); if( mbedtls_md_info_from_type( digest ) != NULL ) TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &pk, digest, hash_result, 0, result_str, mbedtls_pk_get_len( &pk ) ) == result ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_ext_test_vec( char *message_hex_string, int digest, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex_str, int pk_type, int mgf1_hash_id, int salt_len, int result ) { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_rsassa_pss_options pss_opts; void *options; int msg_len; size_t hash_len; mbedtls_pk_init( &pk ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); msg_len = unhexify( message_str, message_hex_string ); unhexify( result_str, result_hex_str ); if( digest != MBEDTLS_MD_NONE ) { TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); hash_len = 0; } else { memcpy( hash_result, message_str, msg_len ); hash_len = msg_len; } if( mgf1_hash_id < 0 ) { options = NULL; } else { options = &pss_opts; pss_opts.mgf1_hash_id = mgf1_hash_id; pss_opts.expected_salt_len = salt_len; } TEST_ASSERT( mbedtls_pk_verify_ext( pk_type, options, &pk, digest, hash_result, hash_len, result_str, mbedtls_pk_get_len( &pk ) ) == result ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ECDSA_C */ void pk_ec_test_vec( int type, int id, char *key_str, char *hash_str, char * sig_str, int ret ) { mbedtls_pk_context pk; mbedtls_ecp_keypair *eckey; unsigned char hash[100], sig[500], key[500]; size_t hash_len, sig_len, key_len; mbedtls_pk_init( &pk ); memset( hash, 0, sizeof( hash ) ); hash_len = unhexify(hash, hash_str); memset( sig, 0, sizeof( sig ) ); sig_len = unhexify(sig, sig_str); memset( key, 0, sizeof( key ) ); key_len = unhexify(key, key_str); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) ); eckey = mbedtls_pk_ec( pk ); TEST_ASSERT( mbedtls_ecp_group_load( &eckey->grp, id ) == 0 ); TEST_ASSERT( mbedtls_ecp_point_read_binary( &eckey->grp, &eckey->Q, key, key_len ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len ) == ret ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */ void pk_sign_verify( int type, int sign_ret, int verify_ret ) { mbedtls_pk_context pk; unsigned char hash[50], sig[5000]; size_t sig_len; mbedtls_pk_init( &pk ); memset( hash, 0x2a, sizeof( hash ) ); memset( sig, 0, sizeof( sig ) ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk ) == 0 ); TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, sizeof( hash ), sig, &sig_len, rnd_std_rand, NULL ) == sign_ret ); if( sign_ret == 0 ) TEST_ASSERT( sig_len <= mbedtls_pk_get_signature_size( &pk ) ); TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256, hash, sizeof( hash ), sig, sig_len ) == verify_ret ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_encrypt_test_vec( char *message_hex, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex, int ret ) { unsigned char message[1000]; unsigned char output[1000]; unsigned char result[1000]; size_t msg_len, olen, res_len; rnd_pseudo_info rnd_info; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( message, 0, sizeof( message ) ); memset( output, 0, sizeof( output ) ); memset( result, 0, sizeof( result ) ); msg_len = unhexify( message, message_hex ); res_len = unhexify( result, result_hex ); mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, message, msg_len, output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( olen == res_len ); TEST_ASSERT( memcmp( output, result, olen ) == 0 ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_decrypt_test_vec( char *cipher_hex, int mod, int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_N, char *input_N, int radix_E, char *input_E, char *clear_hex, int ret ) { unsigned char clear[1000]; unsigned char output[1000]; unsigned char cipher[1000]; size_t clear_len, olen, cipher_len; rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_init( &pk ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( clear, 0, sizeof( clear ) ); memset( cipher, 0, sizeof( cipher ) ); clear_len = unhexify( clear, clear_hex ); cipher_len = unhexify( cipher, cipher_hex ); /* init pk-rsa context */ TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); /* load public key */ TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 ); /* load private key */ TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( rsa ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( rsa ) == 0 ); /* decryption test */ memset( output, 0, sizeof( output ) ); olen = 0; TEST_ASSERT( mbedtls_pk_decrypt( &pk, cipher, cipher_len, output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); if( ret == 0 ) { TEST_ASSERT( olen == clear_len ); TEST_ASSERT( memcmp( output, clear, olen ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE */ void pk_ec_nocrypt( int type ) { mbedtls_pk_context pk; unsigned char output[100]; unsigned char input[100]; rnd_pseudo_info rnd_info; size_t olen = 0; int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH; mbedtls_pk_init( &pk ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( output, 0, sizeof( output ) ); memset( input, 0, sizeof( input ) ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( mbedtls_pk_decrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_overflow( ) { mbedtls_pk_context pk; size_t hash_len = SIZE_MAX; if( SIZE_MAX <= UINT_MAX ) return; mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); #if defined(MBEDTLS_PKCS1_V21) TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_RSASSA_PSS, NULL, &pk, MBEDTLS_MD_NONE, NULL, hash_len, NULL, 0 ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* MBEDTLS_PKCS1_V21 */ TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, NULL, hash_len, NULL, 0 ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_NONE, NULL, hash_len, NULL, 0, rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */ void pk_rsa_alt( ) { /* * An rsa_alt context can only do private operations (decrypt, sign). * Test it against the public operations (encrypt, verify) of a * corresponding rsa context. */ mbedtls_pk_context alt; mbedtls_rsa_context raw; /* Generate an RSA key to use in both contexts */ pk_rsa_prepare( &raw ); /* Set up the alt context with the generated key */ mbedtls_pk_init( &alt ); TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw, mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 ); /* Check the metadata in the alt context */ TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 ); /* Exercise the alt context */ pk_rsa_match( &raw, &alt, 0, MBEDTLS_ERR_PK_TYPE_MISMATCH, MBEDTLS_ERR_PK_TYPE_MISMATCH, 0, MBEDTLS_ERR_PK_TYPE_MISMATCH ); exit: mbedtls_rsa_free( &raw ); mbedtls_pk_free( &alt ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_ECDSA_C */ void pk_opaque_mock( ) { mbedtls_pk_info_t info = MBEDTLS_PK_OPAQUE_INFO_1( "mock" , opaque_mock_get_bitlen , opaque_mock_can_do , opaque_mock_signature_size_func , opaque_mock_verify_func , opaque_mock_sign_func , opaque_mock_decrypt_func , opaque_mock_encrypt_func , opaque_mock_check_pair_func , opaque_mock_ctx_alloc_func , opaque_mock_ctx_free_func , opaque_mock_debug_func ); mbedtls_pk_context ctx; unsigned char sig[OPAQUE_MOCK_SIGNATURE_SIZE] = OPAQUE_MOCK_GOOD_SIGNATURE; unsigned char input[sizeof( opaque_mock_reference_input )]; unsigned char output[sizeof( opaque_mock_reference_decrypted )] = "garbage"; size_t len; mbedtls_pk_init( &ctx ); TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 ); TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE ); TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name ); TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN ); TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 ); TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 ); TEST_ASSERT( mbedtls_pk_get_signature_size( &ctx ) == OPAQUE_MOCK_SIGNATURE_SIZE ); TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG, opaque_mock_hash, sizeof( opaque_mock_hash ), sig, OPAQUE_MOCK_SIGNATURE_SIZE ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG, opaque_mock_hash, sizeof( opaque_mock_hash ), sig, OPAQUE_MOCK_SIGNATURE_SIZE - 1 ) == MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); sig[0] ^= 1; TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG, opaque_mock_hash, sizeof( opaque_mock_hash ), sig, OPAQUE_MOCK_SIGNATURE_SIZE ) == MBEDTLS_ERR_PK_INVALID_SIGNATURE ); len = -42; TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG, opaque_mock_hash, sizeof( opaque_mock_hash ), sig, &len, NULL, NULL ) == 0 ); TEST_ASSERT( len == OPAQUE_MOCK_SIGNATURE_SIZE ); memcpy( input, opaque_mock_reference_input, sizeof( opaque_mock_reference_input ) ); len = -42; TEST_ASSERT( mbedtls_pk_encrypt( &ctx, input, sizeof( input ), output, &len, sizeof( opaque_mock_reference_encrypted ), NULL, NULL ) == 0); TEST_ASSERT( memcmp( input, opaque_mock_reference_input, sizeof( opaque_mock_reference_input ) ) == 0 ); TEST_ASSERT( len == sizeof( opaque_mock_reference_encrypted ) ); TEST_ASSERT( memcmp( output, opaque_mock_reference_encrypted, sizeof( opaque_mock_reference_encrypted ) ) == 0 ); len = -42; TEST_ASSERT( mbedtls_pk_decrypt( &ctx, input, sizeof( input ), output, &len, sizeof( opaque_mock_reference_decrypted ), NULL, NULL ) == 0); TEST_ASSERT( memcmp( input, opaque_mock_reference_input, sizeof( opaque_mock_reference_input ) ) == 0 ); TEST_ASSERT( len == sizeof( opaque_mock_reference_decrypted ) ); TEST_ASSERT( memcmp( output, opaque_mock_reference_decrypted, sizeof( opaque_mock_reference_decrypted ) ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 ); { mbedtls_pk_context pub; mbedtls_pk_init( &pub ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == 0 ); mbedtls_pk_free( &pub ); TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( MBEDTLS_PK_ECDSA ) ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); mbedtls_pk_free( &pub ); } opaque_mock_debug_called_correctly = 0; TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) == 0 ); TEST_ASSERT( opaque_mock_debug_called_correctly ); opaque_mock_free_called_correctly = 0; mbedtls_pk_free( &ctx ); TEST_ASSERT( opaque_mock_free_called_correctly ); return; exit: mbedtls_pk_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_opaque_minimal( ) { mbedtls_pk_info_t info = MBEDTLS_PK_OPAQUE_INFO_1( "mock" , opaque_mock_get_bitlen , opaque_mock_can_do , NULL , NULL , NULL , NULL , NULL , NULL , NULL , opaque_mock_ctx_free_func , NULL ); mbedtls_pk_context ctx; mbedtls_pk_init( &ctx ); TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == 0 ); ctx.pk_ctx = &opaque_mock_fake_ctx; TEST_ASSERT( mbedtls_pk_get_type( &ctx ) == MBEDTLS_PK_OPAQUE ); TEST_ASSERT( mbedtls_pk_get_name( &ctx ) == info.name ); TEST_ASSERT( mbedtls_pk_get_bitlen( &ctx ) == OPAQUE_MOCK_BITLEN ); TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ) == 1 ); TEST_ASSERT( mbedtls_pk_can_do( &ctx, OPAQUE_MOCK_CAN_DO ^ 1 ) == 0 ); TEST_ASSERT( mbedtls_pk_get_signature_size( &ctx ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &ctx, OPAQUE_MOCK_MD_ALG, NULL, 0, NULL, 0 ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); TEST_ASSERT( mbedtls_pk_sign( &ctx, OPAQUE_MOCK_MD_ALG, NULL, 0, NULL, NULL, NULL, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); TEST_ASSERT( mbedtls_pk_encrypt( &ctx, NULL, 0, NULL, NULL, 0, NULL, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH); TEST_ASSERT( mbedtls_pk_decrypt( &ctx, NULL, 0, NULL, NULL, 0, NULL, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH); TEST_ASSERT( mbedtls_pk_check_pair( NULL, &ctx ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_check_pair( &ctx, &ctx ) == 0 ); { mbedtls_pk_context pub; mbedtls_pk_init( &pub ); TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &ctx ) == MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE ); mbedtls_pk_free( &pub ); } TEST_ASSERT( mbedtls_pk_debug( &ctx, &opaque_mock_pk_debug_item ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); opaque_mock_free_called_correctly = 0; mbedtls_pk_free( &ctx ); TEST_ASSERT( opaque_mock_free_called_correctly ); return; exit: mbedtls_pk_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_opaque_fail_allocation( ) { mbedtls_pk_info_t info = MBEDTLS_PK_OPAQUE_INFO_1( "mock" , opaque_mock_get_bitlen , opaque_mock_can_do , NULL , NULL , NULL , NULL , NULL , NULL , opaque_mock_ctx_alloc_fail , NULL , NULL ); mbedtls_pk_context ctx; mbedtls_pk_init( &ctx ); TEST_ASSERT( mbedtls_pk_setup( &ctx, &info ) == MBEDTLS_ERR_PK_ALLOC_FAILED ); TEST_ASSERT( ctx.pk_info == NULL ); TEST_ASSERT( ctx.pk_ctx == NULL ); exit: mbedtls_pk_free( &ctx ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */ void pk_opaque_wrapper( ) { /* Test an opaque context that's a wrapper around the usual RSA implementation against an independent raw RSA context. */ mbedtls_pk_context opaque; mbedtls_rsa_context raw; const mbedtls_pk_info_t *mbedtls_rsa_info = mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ); mbedtls_pk_info_t pk_rsa_opaque_info = MBEDTLS_PK_OPAQUE_INFO_1( "RSA-opaque-wrapper" , mbedtls_rsa_info->get_bitlen , mbedtls_rsa_info->can_do , mbedtls_rsa_info->signature_size_func , mbedtls_rsa_info->verify_func , mbedtls_rsa_info->sign_func , mbedtls_rsa_info->decrypt_func , mbedtls_rsa_info->encrypt_func , NULL // we don't test check_pair here , mbedtls_rsa_info->ctx_alloc_func , mbedtls_rsa_info->ctx_free_func , mbedtls_rsa_info->debug_func ); /* Generate an RSA key to use in both contexts */ pk_rsa_prepare( &raw ); /* Set up the opaque context with the generated key */ mbedtls_pk_init( &opaque ); TEST_ASSERT( mbedtls_pk_setup( &opaque, &pk_rsa_opaque_info ) == 0 ); mbedtls_rsa_copy( opaque.pk_ctx, &raw ); /* Check the metadata in the opaque context */ TEST_ASSERT( mbedtls_pk_get_type( &opaque ) == MBEDTLS_PK_OPAQUE ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &opaque ), "RSA-opaque-wrapper" ) == 0 ); /* Exercise the opaque context */ pk_rsa_match( &raw, &opaque, 0, 0, 0, 0, 0 ); exit: mbedtls_rsa_free( &raw ); mbedtls_pk_free( &opaque ); } /* END_CASE */