/* * PSA crypto layer on top of Mbed TLS crypto */ /* Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_PSA_CRYPTO_C) /* * In case MBEDTLS_PSA_CRYPTO_SPM is defined the code is built for SPM (Secure * Partition Manager) integration which separate the code into two parts * NSPE (Non-Secure Process Environment) and SPE (Secure Process Environment). * In this mode an additional header file should be included. */ #if defined(MBEDTLS_PSA_CRYPTO_SPM) /* * PSA_CRYPTO_SECURE means that this file is compiled to the SPE side. * some headers will be affected by this flag. */ #define PSA_CRYPTO_SECURE 1 #include "crypto_spe.h" #endif #include "psa/crypto.h" #include #include #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #define mbedtls_calloc calloc #define mbedtls_free free #endif #include "mbedtls/arc4.h" #include "mbedtls/asn1.h" #include "mbedtls/bignum.h" #include "mbedtls/blowfish.h" #include "mbedtls/camellia.h" #include "mbedtls/cipher.h" #include "mbedtls/ccm.h" #include "mbedtls/cmac.h" #include "mbedtls/ctr_drbg.h" #include "mbedtls/des.h" #include "mbedtls/ecp.h" #include "mbedtls/entropy.h" #include "mbedtls/error.h" #include "mbedtls/gcm.h" #include "mbedtls/md2.h" #include "mbedtls/md4.h" #include "mbedtls/md5.h" #include "mbedtls/md.h" #include "mbedtls/md_internal.h" #include "mbedtls/pk.h" #include "mbedtls/pk_internal.h" #include "mbedtls/ripemd160.h" #include "mbedtls/rsa.h" #include "mbedtls/sha1.h" #include "mbedtls/sha256.h" #include "mbedtls/sha512.h" #include "mbedtls/xtea.h" #define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) ) /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while( n-- ) *p++ = 0; } /* constant-time buffer comparison */ static inline int safer_memcmp( const uint8_t *a, const uint8_t *b, size_t n ) { size_t i; unsigned char diff = 0; for( i = 0; i < n; i++ ) diff |= a[i] ^ b[i]; return( diff ); } /****************************************************************/ /* Global data, support functions and library management */ /****************************************************************/ /* Number of key slots (plus one because 0 is not used). * The value is a compile-time constant for now, for simplicity. */ #define PSA_KEY_SLOT_COUNT 32 typedef struct { psa_key_type_t type; psa_key_policy_t policy; psa_key_lifetime_t lifetime; union { struct raw_data { uint8_t *data; size_t bytes; } raw; #if defined(MBEDTLS_RSA_C) mbedtls_rsa_context *rsa; #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECP_C) mbedtls_ecp_keypair *ecp; #endif /* MBEDTLS_ECP_C */ } data; } key_slot_t; static int key_type_is_raw_bytes( psa_key_type_t type ) { return( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) ); } typedef struct { int initialized; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; key_slot_t key_slots[PSA_KEY_SLOT_COUNT]; } psa_global_data_t; static psa_global_data_t global_data; static psa_status_t mbedtls_to_psa_error( int ret ) { /* If there's both a high-level code and low-level code, dispatch on * the high-level code. */ switch( ret < -0x7f ? - ( -ret & 0x7f80 ) : ret ) { case 0: return( PSA_SUCCESS ); case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH: case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH: case MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_AES_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_ARC4_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_ASN1_OUT_OF_DATA: case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG: case MBEDTLS_ERR_ASN1_INVALID_LENGTH: case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH: case MBEDTLS_ERR_ASN1_INVALID_DATA: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_ASN1_ALLOC_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL: return( PSA_ERROR_BUFFER_TOO_SMALL ); case MBEDTLS_ERR_BLOWFISH_INVALID_KEY_LENGTH: case MBEDTLS_ERR_BLOWFISH_INVALID_INPUT_LENGTH: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_BLOWFISH_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH: case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_CAMELLIA_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_CCM_BAD_INPUT: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_CCM_AUTH_FAILED: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_CCM_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_CIPHER_ALLOC_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_CIPHER_INVALID_PADDING: return( PSA_ERROR_INVALID_PADDING ); case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED: return( PSA_ERROR_BAD_STATE ); case MBEDTLS_ERR_CIPHER_AUTH_FAILED: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT: return( PSA_ERROR_TAMPERING_DETECTED ); case MBEDTLS_ERR_CIPHER_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_CMAC_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED: return( PSA_ERROR_INSUFFICIENT_ENTROPY ); case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG: case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR: return( PSA_ERROR_INSUFFICIENT_ENTROPY ); case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_DES_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED: case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE: case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED: return( PSA_ERROR_INSUFFICIENT_ENTROPY ); case MBEDTLS_ERR_GCM_AUTH_FAILED: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_GCM_BAD_INPUT: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_GCM_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_MD2_HW_ACCEL_FAILED: case MBEDTLS_ERR_MD4_HW_ACCEL_FAILED: case MBEDTLS_ERR_MD5_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_MD_BAD_INPUT_DATA: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_MD_ALLOC_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_MD_FILE_IO_ERROR: return( PSA_ERROR_STORAGE_FAILURE ); case MBEDTLS_ERR_MD_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_PK_ALLOC_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_PK_TYPE_MISMATCH: case MBEDTLS_ERR_PK_BAD_INPUT_DATA: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_PK_FILE_IO_ERROR: return( PSA_ERROR_STORAGE_FAILURE ); case MBEDTLS_ERR_PK_KEY_INVALID_VERSION: case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_PK_PASSWORD_REQUIRED: case MBEDTLS_ERR_PK_PASSWORD_MISMATCH: return( PSA_ERROR_NOT_PERMITTED ); case MBEDTLS_ERR_PK_INVALID_PUBKEY: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_PK_INVALID_ALG: case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE: case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_PK_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_RIPEMD160_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_RSA_BAD_INPUT_DATA: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_RSA_INVALID_PADDING: return( PSA_ERROR_INVALID_PADDING ); case MBEDTLS_ERR_RSA_KEY_GEN_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_RSA_PUBLIC_FAILED: case MBEDTLS_ERR_RSA_PRIVATE_FAILED: return( PSA_ERROR_TAMPERING_DETECTED ); case MBEDTLS_ERR_RSA_VERIFY_FAILED: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE: return( PSA_ERROR_BUFFER_TOO_SMALL ); case MBEDTLS_ERR_RSA_RNG_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_RSA_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_SHA1_HW_ACCEL_FAILED: case MBEDTLS_ERR_SHA256_HW_ACCEL_FAILED: case MBEDTLS_ERR_SHA512_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_XTEA_INVALID_INPUT_LENGTH: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_XTEA_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); case MBEDTLS_ERR_ECP_BAD_INPUT_DATA: case MBEDTLS_ERR_ECP_INVALID_KEY: return( PSA_ERROR_INVALID_ARGUMENT ); case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL: return( PSA_ERROR_BUFFER_TOO_SMALL ); case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE: return( PSA_ERROR_NOT_SUPPORTED ); case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH: case MBEDTLS_ERR_ECP_VERIFY_FAILED: return( PSA_ERROR_INVALID_SIGNATURE ); case MBEDTLS_ERR_ECP_ALLOC_FAILED: return( PSA_ERROR_INSUFFICIENT_MEMORY ); case MBEDTLS_ERR_ECP_HW_ACCEL_FAILED: return( PSA_ERROR_HARDWARE_FAILURE ); default: return( PSA_ERROR_UNKNOWN_ERROR ); } } /* Retrieve a key slot, occupied or not. */ static psa_status_t psa_get_key_slot( psa_key_slot_t key, key_slot_t **p_slot ) { /* 0 is not a valid slot number under any circumstance. This * implementation provides slots number 1 to N where N is the * number of available slots. */ if( key == 0 || key > ARRAY_LENGTH( global_data.key_slots ) ) return( PSA_ERROR_INVALID_ARGUMENT ); *p_slot = &global_data.key_slots[key - 1]; return( PSA_SUCCESS ); } /* Retrieve an empty key slot (slot with no key data, but possibly * with some metadata such as a policy). */ static psa_status_t psa_get_empty_key_slot( psa_key_slot_t key, key_slot_t **p_slot ) { psa_status_t status; key_slot_t *slot = NULL; *p_slot = NULL; status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( slot->type != PSA_KEY_TYPE_NONE ) return( PSA_ERROR_OCCUPIED_SLOT ); *p_slot = slot; return( status ); } /** Retrieve a slot which must contain a key. The key must have allow all the * usage flags set in \p usage. If \p alg is nonzero, the key must allow * operations with this algorithm. */ static psa_status_t psa_get_key_from_slot( psa_key_slot_t key, key_slot_t **p_slot, psa_key_usage_t usage, psa_algorithm_t alg ) { psa_status_t status; key_slot_t *slot = NULL; *p_slot = NULL; status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( slot->type == PSA_KEY_TYPE_NONE ) return( PSA_ERROR_EMPTY_SLOT ); /* Enforce that usage policy for the key slot contains all the flags * required by the usage parameter. There is one exception: public * keys can always be exported, so we treat public key objects as * if they had the export flag. */ if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) ) usage &= ~PSA_KEY_USAGE_EXPORT; if( ( slot->policy.usage & usage ) != usage ) return( PSA_ERROR_NOT_PERMITTED ); if( alg != 0 && ( alg != slot->policy.alg ) ) return( PSA_ERROR_NOT_PERMITTED ); *p_slot = slot; return( PSA_SUCCESS ); } /****************************************************************/ /* Key management */ /****************************************************************/ #if defined(MBEDTLS_ECP_C) static psa_ecc_curve_t mbedtls_ecc_group_to_psa( mbedtls_ecp_group_id grpid ) { switch( grpid ) { case MBEDTLS_ECP_DP_SECP192R1: return( PSA_ECC_CURVE_SECP192R1 ); case MBEDTLS_ECP_DP_SECP224R1: return( PSA_ECC_CURVE_SECP224R1 ); case MBEDTLS_ECP_DP_SECP256R1: return( PSA_ECC_CURVE_SECP256R1 ); case MBEDTLS_ECP_DP_SECP384R1: return( PSA_ECC_CURVE_SECP384R1 ); case MBEDTLS_ECP_DP_SECP521R1: return( PSA_ECC_CURVE_SECP521R1 ); case MBEDTLS_ECP_DP_BP256R1: return( PSA_ECC_CURVE_BRAINPOOL_P256R1 ); case MBEDTLS_ECP_DP_BP384R1: return( PSA_ECC_CURVE_BRAINPOOL_P384R1 ); case MBEDTLS_ECP_DP_BP512R1: return( PSA_ECC_CURVE_BRAINPOOL_P512R1 ); case MBEDTLS_ECP_DP_CURVE25519: return( PSA_ECC_CURVE_CURVE25519 ); case MBEDTLS_ECP_DP_SECP192K1: return( PSA_ECC_CURVE_SECP192K1 ); case MBEDTLS_ECP_DP_SECP224K1: return( PSA_ECC_CURVE_SECP224K1 ); case MBEDTLS_ECP_DP_SECP256K1: return( PSA_ECC_CURVE_SECP256K1 ); case MBEDTLS_ECP_DP_CURVE448: return( PSA_ECC_CURVE_CURVE448 ); default: return( 0 ); } } static mbedtls_ecp_group_id mbedtls_ecc_group_of_psa( psa_ecc_curve_t curve ) { switch( curve ) { case PSA_ECC_CURVE_SECP192R1: return( MBEDTLS_ECP_DP_SECP192R1 ); case PSA_ECC_CURVE_SECP224R1: return( MBEDTLS_ECP_DP_SECP224R1 ); case PSA_ECC_CURVE_SECP256R1: return( MBEDTLS_ECP_DP_SECP256R1 ); case PSA_ECC_CURVE_SECP384R1: return( MBEDTLS_ECP_DP_SECP384R1 ); case PSA_ECC_CURVE_SECP521R1: return( MBEDTLS_ECP_DP_SECP521R1 ); case PSA_ECC_CURVE_BRAINPOOL_P256R1: return( MBEDTLS_ECP_DP_BP256R1 ); case PSA_ECC_CURVE_BRAINPOOL_P384R1: return( MBEDTLS_ECP_DP_BP384R1 ); case PSA_ECC_CURVE_BRAINPOOL_P512R1: return( MBEDTLS_ECP_DP_BP512R1 ); case PSA_ECC_CURVE_CURVE25519: return( MBEDTLS_ECP_DP_CURVE25519 ); case PSA_ECC_CURVE_SECP192K1: return( MBEDTLS_ECP_DP_SECP192K1 ); case PSA_ECC_CURVE_SECP224K1: return( MBEDTLS_ECP_DP_SECP224K1 ); case PSA_ECC_CURVE_SECP256K1: return( MBEDTLS_ECP_DP_SECP256K1 ); case PSA_ECC_CURVE_CURVE448: return( MBEDTLS_ECP_DP_CURVE448 ); default: return( MBEDTLS_ECP_DP_NONE ); } } #endif /* defined(MBEDTLS_ECP_C) */ static psa_status_t prepare_raw_data_slot( psa_key_type_t type, size_t bits, struct raw_data *raw ) { /* Check that the bit size is acceptable for the key type */ switch( type ) { case PSA_KEY_TYPE_RAW_DATA: if( bits == 0 ) { raw->bytes = 0; raw->data = NULL; return( PSA_SUCCESS ); } break; #if defined(MBEDTLS_MD_C) case PSA_KEY_TYPE_HMAC: #endif case PSA_KEY_TYPE_DERIVE: break; #if defined(MBEDTLS_AES_C) case PSA_KEY_TYPE_AES: if( bits != 128 && bits != 192 && bits != 256 ) return( PSA_ERROR_INVALID_ARGUMENT ); break; #endif #if defined(MBEDTLS_CAMELLIA_C) case PSA_KEY_TYPE_CAMELLIA: if( bits != 128 && bits != 192 && bits != 256 ) return( PSA_ERROR_INVALID_ARGUMENT ); break; #endif #if defined(MBEDTLS_DES_C) case PSA_KEY_TYPE_DES: if( bits != 64 && bits != 128 && bits != 192 ) return( PSA_ERROR_INVALID_ARGUMENT ); break; #endif #if defined(MBEDTLS_ARC4_C) case PSA_KEY_TYPE_ARC4: if( bits < 8 || bits > 2048 ) return( PSA_ERROR_INVALID_ARGUMENT ); break; #endif default: return( PSA_ERROR_NOT_SUPPORTED ); } if( bits % 8 != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); /* Allocate memory for the key */ raw->bytes = PSA_BITS_TO_BYTES( bits ); raw->data = mbedtls_calloc( 1, raw->bytes ); if( raw->data == NULL ) { raw->bytes = 0; return( PSA_ERROR_INSUFFICIENT_MEMORY ); } return( PSA_SUCCESS ); } #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C) static psa_status_t psa_import_rsa_key( mbedtls_pk_context *pk, mbedtls_rsa_context **p_rsa ) { if( mbedtls_pk_get_type( pk ) != MBEDTLS_PK_RSA ) return( PSA_ERROR_INVALID_ARGUMENT ); else { mbedtls_rsa_context *rsa = mbedtls_pk_rsa( *pk ); size_t bits = mbedtls_rsa_get_bitlen( rsa ); if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS ) return( PSA_ERROR_NOT_SUPPORTED ); *p_rsa = rsa; return( PSA_SUCCESS ); } } #endif /* defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C) */ #if defined(MBEDTLS_ECP_C) && defined(MBEDTLS_PK_PARSE_C) static psa_status_t psa_import_ecp_key( psa_ecc_curve_t expected_curve, mbedtls_pk_context *pk, mbedtls_ecp_keypair **p_ecp ) { if( mbedtls_pk_get_type( pk ) != MBEDTLS_PK_ECKEY ) return( PSA_ERROR_INVALID_ARGUMENT ); else { mbedtls_ecp_keypair *ecp = mbedtls_pk_ec( *pk ); psa_ecc_curve_t actual_curve = mbedtls_ecc_group_to_psa( ecp->grp.id ); if( actual_curve != expected_curve ) return( PSA_ERROR_INVALID_ARGUMENT ); *p_ecp = ecp; return( PSA_SUCCESS ); } } #endif /* defined(MBEDTLS_ECP_C) && defined(MBEDTLS_PK_PARSE_C) */ psa_status_t psa_import_key( psa_key_slot_t key, psa_key_type_t type, const uint8_t *data, size_t data_length ) { key_slot_t *slot; psa_status_t status = PSA_SUCCESS; status = psa_get_empty_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( key_type_is_raw_bytes( type ) ) { /* Ensure that a bytes-to-bit conversion won't overflow. */ if( data_length > SIZE_MAX / 8 ) return( PSA_ERROR_NOT_SUPPORTED ); status = prepare_raw_data_slot( type, PSA_BYTES_TO_BITS( data_length ), &slot->data.raw ); if( status != PSA_SUCCESS ) return( status ); if( data_length != 0 ) memcpy( slot->data.raw.data, data, data_length ); } else #if defined(MBEDTLS_PK_PARSE_C) if( PSA_KEY_TYPE_IS_RSA( type ) || PSA_KEY_TYPE_IS_ECC( type ) ) { int ret; mbedtls_pk_context pk; mbedtls_pk_init( &pk ); /* Parse the data. */ if( PSA_KEY_TYPE_IS_KEYPAIR( type ) ) ret = mbedtls_pk_parse_key( &pk, data, data_length, NULL, 0 ); else ret = mbedtls_pk_parse_public_key( &pk, data, data_length ); if( ret != 0 ) return( mbedtls_to_psa_error( ret ) ); /* We have something that the pkparse module recognizes. * If it has the expected type and passes any type-specific * checks, store it. */ #if defined(MBEDTLS_RSA_C) if( PSA_KEY_TYPE_IS_RSA( type ) ) status = psa_import_rsa_key( &pk, &slot->data.rsa ); else #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( type ) ) status = psa_import_ecp_key( PSA_KEY_TYPE_GET_CURVE( type ), &pk, &slot->data.ecp ); else #endif /* MBEDTLS_ECP_C */ { status = PSA_ERROR_NOT_SUPPORTED; } /* Free the content of the pk object only on error. On success, * the content of the object has been stored in the slot. */ if( status != PSA_SUCCESS ) { mbedtls_pk_free( &pk ); return( status ); } } else #endif /* defined(MBEDTLS_PK_PARSE_C) */ { return( PSA_ERROR_NOT_SUPPORTED ); } slot->type = type; return( PSA_SUCCESS ); } psa_status_t psa_destroy_key( psa_key_slot_t key ) { key_slot_t *slot; psa_status_t status; status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( slot->type == PSA_KEY_TYPE_NONE ) { /* No key material to clean, but do zeroize the slot below to wipe * metadata such as policies. */ } else if( key_type_is_raw_bytes( slot->type ) ) { mbedtls_free( slot->data.raw.data ); } else #if defined(MBEDTLS_RSA_C) if( PSA_KEY_TYPE_IS_RSA( slot->type ) ) { mbedtls_rsa_free( slot->data.rsa ); mbedtls_free( slot->data.rsa ); } else #endif /* defined(MBEDTLS_RSA_C) */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( slot->type ) ) { mbedtls_ecp_keypair_free( slot->data.ecp ); mbedtls_free( slot->data.ecp ); } else #endif /* defined(MBEDTLS_ECP_C) */ { /* Shouldn't happen: the key type is not any type that we * put in. */ return( PSA_ERROR_TAMPERING_DETECTED ); } mbedtls_zeroize( slot, sizeof( *slot ) ); return( PSA_SUCCESS ); } /* Return the size of the key in the given slot, in bits. */ static size_t psa_get_key_bits( const key_slot_t *slot ) { if( key_type_is_raw_bytes( slot->type ) ) return( slot->data.raw.bytes * 8 ); #if defined(MBEDTLS_RSA_C) if( PSA_KEY_TYPE_IS_RSA( slot->type ) ) return( mbedtls_rsa_get_bitlen( slot->data.rsa ) ); #endif /* defined(MBEDTLS_RSA_C) */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( slot->type ) ) return( slot->data.ecp->grp.pbits ); #endif /* defined(MBEDTLS_ECP_C) */ /* Shouldn't happen except on an empty slot. */ return( 0 ); } psa_status_t psa_get_key_information( psa_key_slot_t key, psa_key_type_t *type, size_t *bits ) { key_slot_t *slot; psa_status_t status; if( type != NULL ) *type = 0; if( bits != NULL ) *bits = 0; status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( slot->type == PSA_KEY_TYPE_NONE ) return( PSA_ERROR_EMPTY_SLOT ); if( type != NULL ) *type = slot->type; if( bits != NULL ) *bits = psa_get_key_bits( slot ); return( PSA_SUCCESS ); } static psa_status_t psa_internal_export_key( psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length, int export_public_key ) { key_slot_t *slot; psa_status_t status; /* Exporting a public key doesn't require a usage flag. If we're * called by psa_export_public_key(), don't require the EXPORT flag. * If we're called by psa_export_key(), do require the EXPORT flag; * if the key turns out to be public key object, psa_get_key_from_slot() * will ignore this flag. */ psa_key_usage_t usage = export_public_key ? 0 : PSA_KEY_USAGE_EXPORT; /* Set the key to empty now, so that even when there are errors, we always * set data_length to a value between 0 and data_size. On error, setting * the key to empty is a good choice because an empty key representation is * unlikely to be accepted anywhere. */ *data_length = 0; status = psa_get_key_from_slot( key, &slot, usage, 0 ); if( status != PSA_SUCCESS ) return( status ); if( export_public_key && ! PSA_KEY_TYPE_IS_ASYMMETRIC( slot->type ) ) return( PSA_ERROR_INVALID_ARGUMENT ); if( key_type_is_raw_bytes( slot->type ) ) { if( slot->data.raw.bytes > data_size ) return( PSA_ERROR_BUFFER_TOO_SMALL ); if( slot->data.raw.bytes != 0 ) memcpy( data, slot->data.raw.data, slot->data.raw.bytes ); *data_length = slot->data.raw.bytes; return( PSA_SUCCESS ); } else { #if defined(MBEDTLS_PK_WRITE_C) if( PSA_KEY_TYPE_IS_RSA( slot->type ) || PSA_KEY_TYPE_IS_ECC( slot->type ) ) { mbedtls_pk_context pk; int ret; if( PSA_KEY_TYPE_IS_RSA( slot->type ) ) { #if defined(MBEDTLS_RSA_C) mbedtls_pk_init( &pk ); pk.pk_info = &mbedtls_rsa_info; pk.pk_ctx = slot->data.rsa; #else return( PSA_ERROR_NOT_SUPPORTED ); #endif } else { #if defined(MBEDTLS_ECP_C) mbedtls_pk_init( &pk ); pk.pk_info = &mbedtls_eckey_info; pk.pk_ctx = slot->data.ecp; #else return( PSA_ERROR_NOT_SUPPORTED ); #endif } if( export_public_key || PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) ) ret = mbedtls_pk_write_pubkey_der( &pk, data, data_size ); else ret = mbedtls_pk_write_key_der( &pk, data, data_size ); if( ret < 0 ) { /* If data_size is 0 then data may be NULL and then the * call to memset would have undefined behavior. */ if( data_size != 0 ) memset( data, 0, data_size ); return( mbedtls_to_psa_error( ret ) ); } /* The mbedtls_pk_xxx functions write to the end of the buffer. * Move the data to the beginning and erase remaining data * at the original location. */ if( 2 * (size_t) ret <= data_size ) { memcpy( data, data + data_size - ret, ret ); memset( data + data_size - ret, 0, ret ); } else if( (size_t) ret < data_size ) { memmove( data, data + data_size - ret, ret ); memset( data + ret, 0, data_size - ret ); } *data_length = ret; return( PSA_SUCCESS ); } else #endif /* defined(MBEDTLS_PK_WRITE_C) */ { /* This shouldn't happen in the reference implementation, but it is valid for a special-purpose implementation to omit support for exporting certain key types. */ return( PSA_ERROR_NOT_SUPPORTED ); } } } psa_status_t psa_export_key( psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length ) { return( psa_internal_export_key( key, data, data_size, data_length, 0 ) ); } psa_status_t psa_export_public_key( psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length ) { return( psa_internal_export_key( key, data, data_size, data_length, 1 ) ); } /****************************************************************/ /* Message digests */ /****************************************************************/ static const mbedtls_md_info_t *mbedtls_md_info_from_psa( psa_algorithm_t alg ) { switch( alg ) { #if defined(MBEDTLS_MD2_C) case PSA_ALG_MD2: return( &mbedtls_md2_info ); #endif #if defined(MBEDTLS_MD4_C) case PSA_ALG_MD4: return( &mbedtls_md4_info ); #endif #if defined(MBEDTLS_MD5_C) case PSA_ALG_MD5: return( &mbedtls_md5_info ); #endif #if defined(MBEDTLS_RIPEMD160_C) case PSA_ALG_RIPEMD160: return( &mbedtls_ripemd160_info ); #endif #if defined(MBEDTLS_SHA1_C) case PSA_ALG_SHA_1: return( &mbedtls_sha1_info ); #endif #if defined(MBEDTLS_SHA256_C) case PSA_ALG_SHA_224: return( &mbedtls_sha224_info ); case PSA_ALG_SHA_256: return( &mbedtls_sha256_info ); #endif #if defined(MBEDTLS_SHA512_C) case PSA_ALG_SHA_384: return( &mbedtls_sha384_info ); case PSA_ALG_SHA_512: return( &mbedtls_sha512_info ); #endif default: return( NULL ); } } psa_status_t psa_hash_abort( psa_hash_operation_t *operation ) { switch( operation->alg ) { case 0: /* The object has (apparently) been initialized but it is not * in use. It's ok to call abort on such an object, and there's * nothing to do. */ break; #if defined(MBEDTLS_MD2_C) case PSA_ALG_MD2: mbedtls_md2_free( &operation->ctx.md2 ); break; #endif #if defined(MBEDTLS_MD4_C) case PSA_ALG_MD4: mbedtls_md4_free( &operation->ctx.md4 ); break; #endif #if defined(MBEDTLS_MD5_C) case PSA_ALG_MD5: mbedtls_md5_free( &operation->ctx.md5 ); break; #endif #if defined(MBEDTLS_RIPEMD160_C) case PSA_ALG_RIPEMD160: mbedtls_ripemd160_free( &operation->ctx.ripemd160 ); break; #endif #if defined(MBEDTLS_SHA1_C) case PSA_ALG_SHA_1: mbedtls_sha1_free( &operation->ctx.sha1 ); break; #endif #if defined(MBEDTLS_SHA256_C) case PSA_ALG_SHA_224: case PSA_ALG_SHA_256: mbedtls_sha256_free( &operation->ctx.sha256 ); break; #endif #if defined(MBEDTLS_SHA512_C) case PSA_ALG_SHA_384: case PSA_ALG_SHA_512: mbedtls_sha512_free( &operation->ctx.sha512 ); break; #endif default: return( PSA_ERROR_BAD_STATE ); } operation->alg = 0; return( PSA_SUCCESS ); } psa_status_t psa_hash_setup( psa_hash_operation_t *operation, psa_algorithm_t alg ) { int ret; operation->alg = 0; switch( alg ) { #if defined(MBEDTLS_MD2_C) case PSA_ALG_MD2: mbedtls_md2_init( &operation->ctx.md2 ); ret = mbedtls_md2_starts_ret( &operation->ctx.md2 ); break; #endif #if defined(MBEDTLS_MD4_C) case PSA_ALG_MD4: mbedtls_md4_init( &operation->ctx.md4 ); ret = mbedtls_md4_starts_ret( &operation->ctx.md4 ); break; #endif #if defined(MBEDTLS_MD5_C) case PSA_ALG_MD5: mbedtls_md5_init( &operation->ctx.md5 ); ret = mbedtls_md5_starts_ret( &operation->ctx.md5 ); break; #endif #if defined(MBEDTLS_RIPEMD160_C) case PSA_ALG_RIPEMD160: mbedtls_ripemd160_init( &operation->ctx.ripemd160 ); ret = mbedtls_ripemd160_starts_ret( &operation->ctx.ripemd160 ); break; #endif #if defined(MBEDTLS_SHA1_C) case PSA_ALG_SHA_1: mbedtls_sha1_init( &operation->ctx.sha1 ); ret = mbedtls_sha1_starts_ret( &operation->ctx.sha1 ); break; #endif #if defined(MBEDTLS_SHA256_C) case PSA_ALG_SHA_224: mbedtls_sha256_init( &operation->ctx.sha256 ); ret = mbedtls_sha256_starts_ret( &operation->ctx.sha256, 1 ); break; case PSA_ALG_SHA_256: mbedtls_sha256_init( &operation->ctx.sha256 ); ret = mbedtls_sha256_starts_ret( &operation->ctx.sha256, 0 ); break; #endif #if defined(MBEDTLS_SHA512_C) case PSA_ALG_SHA_384: mbedtls_sha512_init( &operation->ctx.sha512 ); ret = mbedtls_sha512_starts_ret( &operation->ctx.sha512, 1 ); break; case PSA_ALG_SHA_512: mbedtls_sha512_init( &operation->ctx.sha512 ); ret = mbedtls_sha512_starts_ret( &operation->ctx.sha512, 0 ); break; #endif default: return( PSA_ALG_IS_HASH( alg ) ? PSA_ERROR_NOT_SUPPORTED : PSA_ERROR_INVALID_ARGUMENT ); } if( ret == 0 ) operation->alg = alg; else psa_hash_abort( operation ); return( mbedtls_to_psa_error( ret ) ); } psa_status_t psa_hash_update( psa_hash_operation_t *operation, const uint8_t *input, size_t input_length ) { int ret; /* Don't require hash implementations to behave correctly on a * zero-length input, which may have an invalid pointer. */ if( input_length == 0 ) return( PSA_SUCCESS ); switch( operation->alg ) { #if defined(MBEDTLS_MD2_C) case PSA_ALG_MD2: ret = mbedtls_md2_update_ret( &operation->ctx.md2, input, input_length ); break; #endif #if defined(MBEDTLS_MD4_C) case PSA_ALG_MD4: ret = mbedtls_md4_update_ret( &operation->ctx.md4, input, input_length ); break; #endif #if defined(MBEDTLS_MD5_C) case PSA_ALG_MD5: ret = mbedtls_md5_update_ret( &operation->ctx.md5, input, input_length ); break; #endif #if defined(MBEDTLS_RIPEMD160_C) case PSA_ALG_RIPEMD160: ret = mbedtls_ripemd160_update_ret( &operation->ctx.ripemd160, input, input_length ); break; #endif #if defined(MBEDTLS_SHA1_C) case PSA_ALG_SHA_1: ret = mbedtls_sha1_update_ret( &operation->ctx.sha1, input, input_length ); break; #endif #if defined(MBEDTLS_SHA256_C) case PSA_ALG_SHA_224: case PSA_ALG_SHA_256: ret = mbedtls_sha256_update_ret( &operation->ctx.sha256, input, input_length ); break; #endif #if defined(MBEDTLS_SHA512_C) case PSA_ALG_SHA_384: case PSA_ALG_SHA_512: ret = mbedtls_sha512_update_ret( &operation->ctx.sha512, input, input_length ); break; #endif default: ret = MBEDTLS_ERR_MD_BAD_INPUT_DATA; break; } if( ret != 0 ) psa_hash_abort( operation ); return( mbedtls_to_psa_error( ret ) ); } psa_status_t psa_hash_finish( psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length ) { psa_status_t status; int ret; size_t actual_hash_length = PSA_HASH_SIZE( operation->alg ); /* Fill the output buffer with something that isn't a valid hash * (barring an attack on the hash and deliberately-crafted input), * in case the caller doesn't check the return status properly. */ *hash_length = hash_size; /* If hash_size is 0 then hash may be NULL and then the * call to memset would have undefined behavior. */ if( hash_size != 0 ) memset( hash, '!', hash_size ); if( hash_size < actual_hash_length ) { status = PSA_ERROR_BUFFER_TOO_SMALL; goto exit; } switch( operation->alg ) { #if defined(MBEDTLS_MD2_C) case PSA_ALG_MD2: ret = mbedtls_md2_finish_ret( &operation->ctx.md2, hash ); break; #endif #if defined(MBEDTLS_MD4_C) case PSA_ALG_MD4: ret = mbedtls_md4_finish_ret( &operation->ctx.md4, hash ); break; #endif #if defined(MBEDTLS_MD5_C) case PSA_ALG_MD5: ret = mbedtls_md5_finish_ret( &operation->ctx.md5, hash ); break; #endif #if defined(MBEDTLS_RIPEMD160_C) case PSA_ALG_RIPEMD160: ret = mbedtls_ripemd160_finish_ret( &operation->ctx.ripemd160, hash ); break; #endif #if defined(MBEDTLS_SHA1_C) case PSA_ALG_SHA_1: ret = mbedtls_sha1_finish_ret( &operation->ctx.sha1, hash ); break; #endif #if defined(MBEDTLS_SHA256_C) case PSA_ALG_SHA_224: case PSA_ALG_SHA_256: ret = mbedtls_sha256_finish_ret( &operation->ctx.sha256, hash ); break; #endif #if defined(MBEDTLS_SHA512_C) case PSA_ALG_SHA_384: case PSA_ALG_SHA_512: ret = mbedtls_sha512_finish_ret( &operation->ctx.sha512, hash ); break; #endif default: ret = MBEDTLS_ERR_MD_BAD_INPUT_DATA; break; } status = mbedtls_to_psa_error( ret ); exit: if( status == PSA_SUCCESS ) { *hash_length = actual_hash_length; return( psa_hash_abort( operation ) ); } else { psa_hash_abort( operation ); return( status ); } } psa_status_t psa_hash_verify( psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length ) { uint8_t actual_hash[MBEDTLS_MD_MAX_SIZE]; size_t actual_hash_length; psa_status_t status = psa_hash_finish( operation, actual_hash, sizeof( actual_hash ), &actual_hash_length ); if( status != PSA_SUCCESS ) return( status ); if( actual_hash_length != hash_length ) return( PSA_ERROR_INVALID_SIGNATURE ); if( safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 ) return( PSA_ERROR_INVALID_SIGNATURE ); return( PSA_SUCCESS ); } /****************************************************************/ /* MAC */ /****************************************************************/ static const mbedtls_cipher_info_t *mbedtls_cipher_info_from_psa( psa_algorithm_t alg, psa_key_type_t key_type, size_t key_bits, mbedtls_cipher_id_t* cipher_id ) { mbedtls_cipher_mode_t mode; mbedtls_cipher_id_t cipher_id_tmp; if( PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) ) { switch( alg ) { case PSA_ALG_ARC4: mode = MBEDTLS_MODE_STREAM; break; case PSA_ALG_CTR: mode = MBEDTLS_MODE_CTR; break; case PSA_ALG_CFB: mode = MBEDTLS_MODE_CFB; break; case PSA_ALG_OFB: mode = MBEDTLS_MODE_OFB; break; case PSA_ALG_CBC_NO_PADDING: mode = MBEDTLS_MODE_CBC; break; case PSA_ALG_CBC_PKCS7: mode = MBEDTLS_MODE_CBC; break; case PSA_ALG_CCM: mode = MBEDTLS_MODE_CCM; break; case PSA_ALG_GCM: mode = MBEDTLS_MODE_GCM; break; default: return( NULL ); } } else if( alg == PSA_ALG_CMAC ) mode = MBEDTLS_MODE_ECB; else if( alg == PSA_ALG_GMAC ) mode = MBEDTLS_MODE_GCM; else return( NULL ); switch( key_type ) { case PSA_KEY_TYPE_AES: cipher_id_tmp = MBEDTLS_CIPHER_ID_AES; break; case PSA_KEY_TYPE_DES: /* key_bits is 64 for Single-DES, 128 for two-key Triple-DES, * and 192 for three-key Triple-DES. */ if( key_bits == 64 ) cipher_id_tmp = MBEDTLS_CIPHER_ID_DES; else cipher_id_tmp = MBEDTLS_CIPHER_ID_3DES; /* mbedtls doesn't recognize two-key Triple-DES as an algorithm, * but two-key Triple-DES is functionally three-key Triple-DES * with K1=K3, so that's how we present it to mbedtls. */ if( key_bits == 128 ) key_bits = 192; break; case PSA_KEY_TYPE_CAMELLIA: cipher_id_tmp = MBEDTLS_CIPHER_ID_CAMELLIA; break; case PSA_KEY_TYPE_ARC4: cipher_id_tmp = MBEDTLS_CIPHER_ID_ARC4; break; default: return( NULL ); } if( cipher_id != NULL ) *cipher_id = cipher_id_tmp; return( mbedtls_cipher_info_from_values( cipher_id_tmp, (int) key_bits, mode ) ); } static size_t psa_get_hash_block_size( psa_algorithm_t alg ) { switch( alg ) { case PSA_ALG_MD2: return( 16 ); case PSA_ALG_MD4: return( 64 ); case PSA_ALG_MD5: return( 64 ); case PSA_ALG_RIPEMD160: return( 64 ); case PSA_ALG_SHA_1: return( 64 ); case PSA_ALG_SHA_224: return( 64 ); case PSA_ALG_SHA_256: return( 64 ); case PSA_ALG_SHA_384: return( 128 ); case PSA_ALG_SHA_512: return( 128 ); default: return( 0 ); } } /* Initialize the MAC operation structure. Once this function has been * called, psa_mac_abort can run and will do the right thing. */ static psa_status_t psa_mac_init( psa_mac_operation_t *operation, psa_algorithm_t alg ) { psa_status_t status = PSA_ERROR_NOT_SUPPORTED; operation->alg = alg; operation->key_set = 0; operation->iv_set = 0; operation->iv_required = 0; operation->has_input = 0; operation->is_sign = 0; #if defined(MBEDTLS_CMAC_C) if( alg == PSA_ALG_CMAC ) { operation->iv_required = 0; mbedtls_cipher_init( &operation->ctx.cmac ); status = PSA_SUCCESS; } else #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HMAC( operation->alg ) ) { /* We'll set up the hash operation later in psa_hmac_setup_internal. */ operation->ctx.hmac.hash_ctx.alg = 0; status = PSA_SUCCESS; } else #endif /* MBEDTLS_MD_C */ { if( ! PSA_ALG_IS_MAC( alg ) ) status = PSA_ERROR_INVALID_ARGUMENT; } if( status != PSA_SUCCESS ) memset( operation, 0, sizeof( *operation ) ); return( status ); } #if defined(MBEDTLS_MD_C) static psa_status_t psa_hmac_abort_internal( psa_hmac_internal_data *hmac ) { mbedtls_zeroize( hmac->opad, sizeof( hmac->opad ) ); return( psa_hash_abort( &hmac->hash_ctx ) ); } #endif /* MBEDTLS_MD_C */ psa_status_t psa_mac_abort( psa_mac_operation_t *operation ) { if( operation->alg == 0 ) { /* The object has (apparently) been initialized but it is not * in use. It's ok to call abort on such an object, and there's * nothing to do. */ return( PSA_SUCCESS ); } else #if defined(MBEDTLS_CMAC_C) if( operation->alg == PSA_ALG_CMAC ) { mbedtls_cipher_free( &operation->ctx.cmac ); } else #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HMAC( operation->alg ) ) { psa_hmac_abort_internal( &operation->ctx.hmac ); } else #endif /* MBEDTLS_MD_C */ { /* Sanity check (shouldn't happen: operation->alg should * always have been initialized to a valid value). */ goto bad_state; } operation->alg = 0; operation->key_set = 0; operation->iv_set = 0; operation->iv_required = 0; operation->has_input = 0; operation->is_sign = 0; return( PSA_SUCCESS ); bad_state: /* If abort is called on an uninitialized object, we can't trust * anything. Wipe the object in case it contains confidential data. * This may result in a memory leak if a pointer gets overwritten, * but it's too late to do anything about this. */ memset( operation, 0, sizeof( *operation ) ); return( PSA_ERROR_BAD_STATE ); } #if defined(MBEDTLS_CMAC_C) static int psa_cmac_setup( psa_mac_operation_t *operation, size_t key_bits, key_slot_t *slot, const mbedtls_cipher_info_t *cipher_info ) { int ret; operation->mac_size = cipher_info->block_size; ret = mbedtls_cipher_setup( &operation->ctx.cmac, cipher_info ); if( ret != 0 ) return( ret ); ret = mbedtls_cipher_cmac_starts( &operation->ctx.cmac, slot->data.raw.data, key_bits ); return( ret ); } #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) static psa_status_t psa_hmac_setup_internal( psa_hmac_internal_data *hmac, const uint8_t *key, size_t key_length, psa_algorithm_t hash_alg ) { unsigned char ipad[PSA_HMAC_MAX_HASH_BLOCK_SIZE]; size_t i; size_t hash_size = PSA_HASH_SIZE( hash_alg ); size_t block_size = psa_get_hash_block_size( hash_alg ); psa_status_t status; /* Sanity checks on block_size, to guarantee that there won't be a buffer * overflow below. This should never trigger if the hash algorithm * is implemented correctly. */ /* The size checks against the ipad and opad buffers cannot be written * `block_size > sizeof( ipad ) || block_size > sizeof( hmac->opad )` * because that triggers -Wlogical-op on GCC 7.3. */ if( block_size > sizeof( ipad ) ) return( PSA_ERROR_NOT_SUPPORTED ); if( block_size > sizeof( hmac->opad ) ) return( PSA_ERROR_NOT_SUPPORTED ); if( block_size < hash_size ) return( PSA_ERROR_NOT_SUPPORTED ); if( key_length > block_size ) { status = psa_hash_setup( &hmac->hash_ctx, hash_alg ); if( status != PSA_SUCCESS ) goto cleanup; status = psa_hash_update( &hmac->hash_ctx, key, key_length ); if( status != PSA_SUCCESS ) goto cleanup; status = psa_hash_finish( &hmac->hash_ctx, ipad, sizeof( ipad ), &key_length ); if( status != PSA_SUCCESS ) goto cleanup; } /* A 0-length key is not commonly used in HMAC when used as a MAC, * but it is permitted. It is common when HMAC is used in HKDF, for * example. Don't call `memcpy` in the 0-length because `key` could be * an invalid pointer which would make the behavior undefined. */ else if( key_length != 0 ) memcpy( ipad, key, key_length ); /* ipad contains the key followed by garbage. Xor and fill with 0x36 * to create the ipad value. */ for( i = 0; i < key_length; i++ ) ipad[i] ^= 0x36; memset( ipad + key_length, 0x36, block_size - key_length ); /* Copy the key material from ipad to opad, flipping the requisite bits, * and filling the rest of opad with the requisite constant. */ for( i = 0; i < key_length; i++ ) hmac->opad[i] = ipad[i] ^ 0x36 ^ 0x5C; memset( hmac->opad + key_length, 0x5C, block_size - key_length ); status = psa_hash_setup( &hmac->hash_ctx, hash_alg ); if( status != PSA_SUCCESS ) goto cleanup; status = psa_hash_update( &hmac->hash_ctx, ipad, block_size ); cleanup: mbedtls_zeroize( ipad, key_length ); return( status ); } #endif /* MBEDTLS_MD_C */ static psa_status_t psa_mac_setup( psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg, int is_sign ) { psa_status_t status; key_slot_t *slot; size_t key_bits; psa_key_usage_t usage = is_sign ? PSA_KEY_USAGE_SIGN : PSA_KEY_USAGE_VERIFY; status = psa_mac_init( operation, alg ); if( status != PSA_SUCCESS ) return( status ); if( is_sign ) operation->is_sign = 1; status = psa_get_key_from_slot( key, &slot, usage, alg ); if( status != PSA_SUCCESS ) goto exit; key_bits = psa_get_key_bits( slot ); #if defined(MBEDTLS_CMAC_C) if( alg == PSA_ALG_CMAC ) { const mbedtls_cipher_info_t *cipher_info = mbedtls_cipher_info_from_psa( alg, slot->type, key_bits, NULL ); int ret; if( cipher_info == NULL ) { status = PSA_ERROR_NOT_SUPPORTED; goto exit; } operation->mac_size = cipher_info->block_size; ret = psa_cmac_setup( operation, key_bits, slot, cipher_info ); status = mbedtls_to_psa_error( ret ); } else #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HMAC( alg ) ) { psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH( alg ); if( hash_alg == 0 ) { status = PSA_ERROR_NOT_SUPPORTED; goto exit; } operation->mac_size = PSA_HASH_SIZE( hash_alg ); /* Sanity check. This shouldn't fail on a valid configuration. */ if( operation->mac_size == 0 || operation->mac_size > sizeof( operation->ctx.hmac.opad ) ) { status = PSA_ERROR_NOT_SUPPORTED; goto exit; } if( slot->type != PSA_KEY_TYPE_HMAC ) { status = PSA_ERROR_INVALID_ARGUMENT; goto exit; } status = psa_hmac_setup_internal( &operation->ctx.hmac, slot->data.raw.data, slot->data.raw.bytes, hash_alg ); } else #endif /* MBEDTLS_MD_C */ { status = PSA_ERROR_NOT_SUPPORTED; } exit: if( status != PSA_SUCCESS ) { psa_mac_abort( operation ); } else { operation->key_set = 1; } return( status ); } psa_status_t psa_mac_sign_setup( psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg ) { return( psa_mac_setup( operation, key, alg, 1 ) ); } psa_status_t psa_mac_verify_setup( psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg ) { return( psa_mac_setup( operation, key, alg, 0 ) ); } psa_status_t psa_mac_update( psa_mac_operation_t *operation, const uint8_t *input, size_t input_length ) { psa_status_t status = PSA_ERROR_BAD_STATE; if( ! operation->key_set ) goto cleanup; if( operation->iv_required && ! operation->iv_set ) goto cleanup; operation->has_input = 1; #if defined(MBEDTLS_CMAC_C) if( operation->alg == PSA_ALG_CMAC ) { int ret = mbedtls_cipher_cmac_update( &operation->ctx.cmac, input, input_length ); status = mbedtls_to_psa_error( ret ); } else #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HMAC( operation->alg ) ) { status = psa_hash_update( &operation->ctx.hmac.hash_ctx, input, input_length ); } else #endif /* MBEDTLS_MD_C */ { /* This shouldn't happen if `operation` was initialized by * a setup function. */ status = PSA_ERROR_BAD_STATE; } cleanup: if( status != PSA_SUCCESS ) psa_mac_abort( operation ); return( status ); } #if defined(MBEDTLS_MD_C) static psa_status_t psa_hmac_finish_internal( psa_hmac_internal_data *hmac, uint8_t *mac, size_t mac_size ) { unsigned char tmp[MBEDTLS_MD_MAX_SIZE]; psa_algorithm_t hash_alg = hmac->hash_ctx.alg; size_t hash_size = 0; size_t block_size = psa_get_hash_block_size( hash_alg ); psa_status_t status; status = psa_hash_finish( &hmac->hash_ctx, tmp, sizeof( tmp ), &hash_size ); if( status != PSA_SUCCESS ) return( status ); /* From here on, tmp needs to be wiped. */ status = psa_hash_setup( &hmac->hash_ctx, hash_alg ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &hmac->hash_ctx, hmac->opad, block_size ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &hmac->hash_ctx, tmp, hash_size ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_finish( &hmac->hash_ctx, mac, mac_size, &hash_size ); exit: mbedtls_zeroize( tmp, hash_size ); return( status ); } #endif /* MBEDTLS_MD_C */ static psa_status_t psa_mac_finish_internal( psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size ) { if( ! operation->key_set ) return( PSA_ERROR_BAD_STATE ); if( operation->iv_required && ! operation->iv_set ) return( PSA_ERROR_BAD_STATE ); if( mac_size < operation->mac_size ) return( PSA_ERROR_BUFFER_TOO_SMALL ); #if defined(MBEDTLS_CMAC_C) if( operation->alg == PSA_ALG_CMAC ) { int ret = mbedtls_cipher_cmac_finish( &operation->ctx.cmac, mac ); return( mbedtls_to_psa_error( ret ) ); } else #endif /* MBEDTLS_CMAC_C */ #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HMAC( operation->alg ) ) { return( psa_hmac_finish_internal( &operation->ctx.hmac, mac, mac_size ) ); } else #endif /* MBEDTLS_MD_C */ { /* This shouldn't happen if `operation` was initialized by * a setup function. */ return( PSA_ERROR_BAD_STATE ); } } psa_status_t psa_mac_sign_finish( psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length ) { psa_status_t status; /* Fill the output buffer with something that isn't a valid mac * (barring an attack on the mac and deliberately-crafted input), * in case the caller doesn't check the return status properly. */ *mac_length = mac_size; /* If mac_size is 0 then mac may be NULL and then the * call to memset would have undefined behavior. */ if( mac_size != 0 ) memset( mac, '!', mac_size ); if( ! operation->is_sign ) { status = PSA_ERROR_BAD_STATE; goto cleanup; } status = psa_mac_finish_internal( operation, mac, mac_size ); cleanup: if( status == PSA_SUCCESS ) { status = psa_mac_abort( operation ); if( status == PSA_SUCCESS ) *mac_length = operation->mac_size; else memset( mac, '!', mac_size ); } else psa_mac_abort( operation ); return( status ); } psa_status_t psa_mac_verify_finish( psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length ) { uint8_t actual_mac[PSA_MAC_MAX_SIZE]; psa_status_t status; if( operation->is_sign ) { status = PSA_ERROR_BAD_STATE; goto cleanup; } if( operation->mac_size != mac_length ) { status = PSA_ERROR_INVALID_SIGNATURE; goto cleanup; } status = psa_mac_finish_internal( operation, actual_mac, sizeof( actual_mac ) ); if( safer_memcmp( mac, actual_mac, mac_length ) != 0 ) status = PSA_ERROR_INVALID_SIGNATURE; cleanup: if( status == PSA_SUCCESS ) status = psa_mac_abort( operation ); else psa_mac_abort( operation ); return( status ); } /****************************************************************/ /* Asymmetric cryptography */ /****************************************************************/ #if defined(MBEDTLS_RSA_C) /* Decode the hash algorithm from alg and store the mbedtls encoding in * md_alg. Verify that the hash length is acceptable. */ static psa_status_t psa_rsa_decode_md_type( psa_algorithm_t alg, size_t hash_length, mbedtls_md_type_t *md_alg ) { psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg ); const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg ); *md_alg = mbedtls_md_get_type( md_info ); /* The Mbed TLS RSA module uses an unsigned int for hash length * parameters. Validate that it fits so that we don't risk an * overflow later. */ #if SIZE_MAX > UINT_MAX if( hash_length > UINT_MAX ) return( PSA_ERROR_INVALID_ARGUMENT ); #endif #if defined(MBEDTLS_PKCS1_V15) /* For PKCS#1 v1.5 signature, if using a hash, the hash length * must be correct. */ if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) && alg != PSA_ALG_RSA_PKCS1V15_SIGN_RAW ) { if( md_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); if( mbedtls_md_get_size( md_info ) != hash_length ) return( PSA_ERROR_INVALID_ARGUMENT ); } #endif /* MBEDTLS_PKCS1_V15 */ #if defined(MBEDTLS_PKCS1_V21) /* PSS requires a hash internally. */ if( PSA_ALG_IS_RSA_PSS( alg ) ) { if( md_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); } #endif /* MBEDTLS_PKCS1_V21 */ return( PSA_SUCCESS ); } static psa_status_t psa_rsa_sign( mbedtls_rsa_context *rsa, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length ) { psa_status_t status; int ret; mbedtls_md_type_t md_alg; status = psa_rsa_decode_md_type( alg, hash_length, &md_alg ); if( status != PSA_SUCCESS ) return( status ); if( signature_size < mbedtls_rsa_get_len( rsa ) ) return( PSA_ERROR_BUFFER_TOO_SMALL ); #if defined(MBEDTLS_PKCS1_V15) if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ) { mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE ); ret = mbedtls_rsa_pkcs1_sign( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PRIVATE, md_alg, (unsigned int) hash_length, hash, signature ); } else #endif /* MBEDTLS_PKCS1_V15 */ #if defined(MBEDTLS_PKCS1_V21) if( PSA_ALG_IS_RSA_PSS( alg ) ) { mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg ); ret = mbedtls_rsa_rsassa_pss_sign( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_NONE, (unsigned int) hash_length, hash, signature ); } else #endif /* MBEDTLS_PKCS1_V21 */ { return( PSA_ERROR_INVALID_ARGUMENT ); } if( ret == 0 ) *signature_length = mbedtls_rsa_get_len( rsa ); return( mbedtls_to_psa_error( ret ) ); } static psa_status_t psa_rsa_verify( mbedtls_rsa_context *rsa, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length ) { psa_status_t status; int ret; mbedtls_md_type_t md_alg; status = psa_rsa_decode_md_type( alg, hash_length, &md_alg ); if( status != PSA_SUCCESS ) return( status ); if( signature_length < mbedtls_rsa_get_len( rsa ) ) return( PSA_ERROR_BUFFER_TOO_SMALL ); #if defined(MBEDTLS_PKCS1_V15) if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) ) { mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE ); ret = mbedtls_rsa_pkcs1_verify( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PUBLIC, md_alg, (unsigned int) hash_length, hash, signature ); } else #endif /* MBEDTLS_PKCS1_V15 */ #if defined(MBEDTLS_PKCS1_V21) if( PSA_ALG_IS_RSA_PSS( alg ) ) { mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg ); ret = mbedtls_rsa_rsassa_pss_verify( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_NONE, (unsigned int) hash_length, hash, signature ); } else #endif /* MBEDTLS_PKCS1_V21 */ { return( PSA_ERROR_INVALID_ARGUMENT ); } return( mbedtls_to_psa_error( ret ) ); } #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECDSA_C) /* `ecp` cannot be const because `ecp->grp` needs to be non-const * for mbedtls_ecdsa_sign() and mbedtls_ecdsa_sign_det() * (even though these functions don't modify it). */ static psa_status_t psa_ecdsa_sign( mbedtls_ecp_keypair *ecp, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length ) { int ret; mbedtls_mpi r, s; size_t curve_bytes = PSA_BITS_TO_BYTES( ecp->grp.pbits ); mbedtls_mpi_init( &r ); mbedtls_mpi_init( &s ); if( signature_size < 2 * curve_bytes ) { ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; goto cleanup; } if( PSA_ALG_DSA_IS_DETERMINISTIC( alg ) ) { psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg ); const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg ); mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info ); MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ecp->grp, &r, &s, &ecp->d, hash, hash_length, md_alg ) ); } else { MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ecp->grp, &r, &s, &ecp->d, hash, hash_length, mbedtls_ctr_drbg_random, &global_data.ctr_drbg ) ); } MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &r, signature, curve_bytes ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &s, signature + curve_bytes, curve_bytes ) ); cleanup: mbedtls_mpi_free( &r ); mbedtls_mpi_free( &s ); if( ret == 0 ) *signature_length = 2 * curve_bytes; return( mbedtls_to_psa_error( ret ) ); } static psa_status_t psa_ecdsa_verify( mbedtls_ecp_keypair *ecp, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length ) { int ret; mbedtls_mpi r, s; size_t curve_bytes = PSA_BITS_TO_BYTES( ecp->grp.pbits ); mbedtls_mpi_init( &r ); mbedtls_mpi_init( &s ); if( signature_length != 2 * curve_bytes ) return( PSA_ERROR_INVALID_SIGNATURE ); MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &r, signature, curve_bytes ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &s, signature + curve_bytes, curve_bytes ) ); ret = mbedtls_ecdsa_verify( &ecp->grp, hash, hash_length, &ecp->Q, &r, &s ); cleanup: mbedtls_mpi_free( &r ); mbedtls_mpi_free( &s ); return( mbedtls_to_psa_error( ret ) ); } #endif /* MBEDTLS_ECDSA_C */ psa_status_t psa_asymmetric_sign( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length ) { key_slot_t *slot; psa_status_t status; *signature_length = signature_size; status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_SIGN, alg ); if( status != PSA_SUCCESS ) goto exit; if( ! PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) ) { status = PSA_ERROR_INVALID_ARGUMENT; goto exit; } #if defined(MBEDTLS_RSA_C) if( slot->type == PSA_KEY_TYPE_RSA_KEYPAIR ) { status = psa_rsa_sign( slot->data.rsa, alg, hash, hash_length, signature, signature_size, signature_length ); } else #endif /* defined(MBEDTLS_RSA_C) */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( slot->type ) ) { #if defined(MBEDTLS_ECDSA_C) if( PSA_ALG_IS_ECDSA( alg ) ) status = psa_ecdsa_sign( slot->data.ecp, alg, hash, hash_length, signature, signature_size, signature_length ); else #endif /* defined(MBEDTLS_ECDSA_C) */ { status = PSA_ERROR_INVALID_ARGUMENT; } } else #endif /* defined(MBEDTLS_ECP_C) */ { status = PSA_ERROR_NOT_SUPPORTED; } exit: /* Fill the unused part of the output buffer (the whole buffer on error, * the trailing part on success) with something that isn't a valid mac * (barring an attack on the mac and deliberately-crafted input), * in case the caller doesn't check the return status properly. */ if( status == PSA_SUCCESS ) memset( signature + *signature_length, '!', signature_size - *signature_length ); else if( signature_size != 0 ) memset( signature, '!', signature_size ); /* If signature_size is 0 then we have nothing to do. We must not call * memset because signature may be NULL in this case. */ return( status ); } psa_status_t psa_asymmetric_verify( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length ) { key_slot_t *slot; psa_status_t status; status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_VERIFY, alg ); if( status != PSA_SUCCESS ) return( status ); #if defined(MBEDTLS_RSA_C) if( PSA_KEY_TYPE_IS_RSA( slot->type ) ) { return( psa_rsa_verify( slot->data.rsa, alg, hash, hash_length, signature, signature_length ) ); } else #endif /* defined(MBEDTLS_RSA_C) */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( slot->type ) ) { #if defined(MBEDTLS_ECDSA_C) if( PSA_ALG_IS_ECDSA( alg ) ) return( psa_ecdsa_verify( slot->data.ecp, hash, hash_length, signature, signature_length ) ); else #endif /* defined(MBEDTLS_ECDSA_C) */ { return( PSA_ERROR_INVALID_ARGUMENT ); } } else #endif /* defined(MBEDTLS_ECP_C) */ { return( PSA_ERROR_NOT_SUPPORTED ); } } #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21) static void psa_rsa_oaep_set_padding_mode( psa_algorithm_t alg, mbedtls_rsa_context *rsa ) { psa_algorithm_t hash_alg = PSA_ALG_RSA_OAEP_GET_HASH( alg ); const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg ); mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info ); mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg ); } #endif /* defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21) */ psa_status_t psa_asymmetric_encrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length ) { key_slot_t *slot; psa_status_t status; (void) input; (void) input_length; (void) salt; (void) output; (void) output_size; *output_length = 0; if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_ENCRYPT, alg ); if( status != PSA_SUCCESS ) return( status ); if( ! ( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) || PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if defined(MBEDTLS_RSA_C) if( PSA_KEY_TYPE_IS_RSA( slot->type ) ) { mbedtls_rsa_context *rsa = slot->data.rsa; int ret; if( output_size < mbedtls_rsa_get_len( rsa ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if defined(MBEDTLS_PKCS1_V15) if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT ) { ret = mbedtls_rsa_pkcs1_encrypt( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PUBLIC, input_length, input, output ); } else #endif /* MBEDTLS_PKCS1_V15 */ #if defined(MBEDTLS_PKCS1_V21) if( PSA_ALG_IS_RSA_OAEP( alg ) ) { psa_rsa_oaep_set_padding_mode( alg, rsa ); ret = mbedtls_rsa_rsaes_oaep_encrypt( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PUBLIC, salt, salt_length, input_length, input, output ); } else #endif /* MBEDTLS_PKCS1_V21 */ { return( PSA_ERROR_INVALID_ARGUMENT ); } if( ret == 0 ) *output_length = mbedtls_rsa_get_len( rsa ); return( mbedtls_to_psa_error( ret ) ); } else #endif /* defined(MBEDTLS_RSA_C) */ { return( PSA_ERROR_NOT_SUPPORTED ); } } psa_status_t psa_asymmetric_decrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length ) { key_slot_t *slot; psa_status_t status; (void) input; (void) input_length; (void) salt; (void) output; (void) output_size; *output_length = 0; if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_DECRYPT, alg ); if( status != PSA_SUCCESS ) return( status ); if( ! PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if defined(MBEDTLS_RSA_C) if( slot->type == PSA_KEY_TYPE_RSA_KEYPAIR ) { mbedtls_rsa_context *rsa = slot->data.rsa; int ret; if( input_length != mbedtls_rsa_get_len( rsa ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if defined(MBEDTLS_PKCS1_V15) if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT ) { ret = mbedtls_rsa_pkcs1_decrypt( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PRIVATE, output_length, input, output, output_size ); } else #endif /* MBEDTLS_PKCS1_V15 */ #if defined(MBEDTLS_PKCS1_V21) if( PSA_ALG_IS_RSA_OAEP( alg ) ) { psa_rsa_oaep_set_padding_mode( alg, rsa ); ret = mbedtls_rsa_rsaes_oaep_decrypt( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, MBEDTLS_RSA_PRIVATE, salt, salt_length, output_length, input, output, output_size ); } else #endif /* MBEDTLS_PKCS1_V21 */ { return( PSA_ERROR_INVALID_ARGUMENT ); } return( mbedtls_to_psa_error( ret ) ); } else #endif /* defined(MBEDTLS_RSA_C) */ { return( PSA_ERROR_NOT_SUPPORTED ); } } /****************************************************************/ /* Symmetric cryptography */ /****************************************************************/ /* Initialize the cipher operation structure. Once this function has been * called, psa_cipher_abort can run and will do the right thing. */ static psa_status_t psa_cipher_init( psa_cipher_operation_t *operation, psa_algorithm_t alg ) { if( ! PSA_ALG_IS_CIPHER( alg ) ) { memset( operation, 0, sizeof( *operation ) ); return( PSA_ERROR_INVALID_ARGUMENT ); } operation->alg = alg; operation->key_set = 0; operation->iv_set = 0; operation->iv_required = 1; operation->iv_size = 0; operation->block_size = 0; mbedtls_cipher_init( &operation->ctx.cipher ); return( PSA_SUCCESS ); } static psa_status_t psa_cipher_setup( psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg, mbedtls_operation_t cipher_operation ) { int ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; psa_status_t status; key_slot_t *slot; size_t key_bits; const mbedtls_cipher_info_t *cipher_info = NULL; psa_key_usage_t usage = ( cipher_operation == MBEDTLS_ENCRYPT ? PSA_KEY_USAGE_ENCRYPT : PSA_KEY_USAGE_DECRYPT ); status = psa_cipher_init( operation, alg ); if( status != PSA_SUCCESS ) return( status ); status = psa_get_key_from_slot( key, &slot, usage, alg); if( status != PSA_SUCCESS ) return( status ); key_bits = psa_get_key_bits( slot ); cipher_info = mbedtls_cipher_info_from_psa( alg, slot->type, key_bits, NULL ); if( cipher_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); ret = mbedtls_cipher_setup( &operation->ctx.cipher, cipher_info ); if( ret != 0 ) { psa_cipher_abort( operation ); return( mbedtls_to_psa_error( ret ) ); } #if defined(MBEDTLS_DES_C) if( slot->type == PSA_KEY_TYPE_DES && key_bits == 128 ) { /* Two-key Triple-DES is 3-key Triple-DES with K1=K3 */ unsigned char keys[24]; memcpy( keys, slot->data.raw.data, 16 ); memcpy( keys + 16, slot->data.raw.data, 8 ); ret = mbedtls_cipher_setkey( &operation->ctx.cipher, keys, 192, cipher_operation ); } else #endif { ret = mbedtls_cipher_setkey( &operation->ctx.cipher, slot->data.raw.data, (int) key_bits, cipher_operation ); } if( ret != 0 ) { psa_cipher_abort( operation ); return( mbedtls_to_psa_error( ret ) ); } #if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING) switch( alg ) { case PSA_ALG_CBC_NO_PADDING: ret = mbedtls_cipher_set_padding_mode( &operation->ctx.cipher, MBEDTLS_PADDING_NONE ); break; case PSA_ALG_CBC_PKCS7: ret = mbedtls_cipher_set_padding_mode( &operation->ctx.cipher, MBEDTLS_PADDING_PKCS7 ); break; default: /* The algorithm doesn't involve padding. */ ret = 0; break; } if( ret != 0 ) { psa_cipher_abort( operation ); return( mbedtls_to_psa_error( ret ) ); } #endif //MBEDTLS_CIPHER_MODE_WITH_PADDING operation->key_set = 1; operation->block_size = ( PSA_ALG_IS_STREAM_CIPHER( alg ) ? 1 : PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type ) ); if( alg & PSA_ALG_CIPHER_FROM_BLOCK_FLAG ) { operation->iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type ); } return( PSA_SUCCESS ); } psa_status_t psa_cipher_encrypt_setup( psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg ) { return( psa_cipher_setup( operation, key, alg, MBEDTLS_ENCRYPT ) ); } psa_status_t psa_cipher_decrypt_setup( psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg ) { return( psa_cipher_setup( operation, key, alg, MBEDTLS_DECRYPT ) ); } psa_status_t psa_cipher_generate_iv( psa_cipher_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length ) { psa_status_t status; int ret; if( operation->iv_set || ! operation->iv_required ) { status = PSA_ERROR_BAD_STATE; goto exit; } if( iv_size < operation->iv_size ) { status = PSA_ERROR_BUFFER_TOO_SMALL; goto exit; } ret = mbedtls_ctr_drbg_random( &global_data.ctr_drbg, iv, operation->iv_size ); if( ret != 0 ) { status = mbedtls_to_psa_error( ret ); goto exit; } *iv_length = operation->iv_size; status = psa_cipher_set_iv( operation, iv, *iv_length ); exit: if( status != PSA_SUCCESS ) psa_cipher_abort( operation ); return( status ); } psa_status_t psa_cipher_set_iv( psa_cipher_operation_t *operation, const unsigned char *iv, size_t iv_length ) { psa_status_t status; int ret; if( operation->iv_set || ! operation->iv_required ) { status = PSA_ERROR_BAD_STATE; goto exit; } if( iv_length != operation->iv_size ) { status = PSA_ERROR_INVALID_ARGUMENT; goto exit; } ret = mbedtls_cipher_set_iv( &operation->ctx.cipher, iv, iv_length ); status = mbedtls_to_psa_error( ret ); exit: if( status == PSA_SUCCESS ) operation->iv_set = 1; else psa_cipher_abort( operation ); return( status ); } psa_status_t psa_cipher_update( psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length, unsigned char *output, size_t output_size, size_t *output_length ) { psa_status_t status; int ret; size_t expected_output_size; if( ! PSA_ALG_IS_STREAM_CIPHER( operation->alg ) ) { /* Take the unprocessed partial block left over from previous * update calls, if any, plus the input to this call. Remove * the last partial block, if any. You get the data that will be * output in this call. */ expected_output_size = ( operation->ctx.cipher.unprocessed_len + input_length ) / operation->block_size * operation->block_size; } else { expected_output_size = input_length; } if( output_size < expected_output_size ) { status = PSA_ERROR_BUFFER_TOO_SMALL; goto exit; } ret = mbedtls_cipher_update( &operation->ctx.cipher, input, input_length, output, output_length ); status = mbedtls_to_psa_error( ret ); exit: if( status != PSA_SUCCESS ) psa_cipher_abort( operation ); return( status ); } psa_status_t psa_cipher_finish( psa_cipher_operation_t *operation, uint8_t *output, size_t output_size, size_t *output_length ) { psa_status_t status = PSA_ERROR_UNKNOWN_ERROR; int cipher_ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; uint8_t temp_output_buffer[MBEDTLS_MAX_BLOCK_LENGTH]; if( ! operation->key_set ) { status = PSA_ERROR_BAD_STATE; goto error; } if( operation->iv_required && ! operation->iv_set ) { status = PSA_ERROR_BAD_STATE; goto error; } if( operation->ctx.cipher.operation == MBEDTLS_ENCRYPT && operation->alg == PSA_ALG_CBC_NO_PADDING && operation->ctx.cipher.unprocessed_len != 0 ) { status = PSA_ERROR_INVALID_ARGUMENT; goto error; } cipher_ret = mbedtls_cipher_finish( &operation->ctx.cipher, temp_output_buffer, output_length ); if( cipher_ret != 0 ) { status = mbedtls_to_psa_error( cipher_ret ); goto error; } if( *output_length == 0 ) ; /* Nothing to copy. Note that output may be NULL in this case. */ else if( output_size >= *output_length ) memcpy( output, temp_output_buffer, *output_length ); else { status = PSA_ERROR_BUFFER_TOO_SMALL; goto error; } mbedtls_zeroize( temp_output_buffer, sizeof( temp_output_buffer ) ); status = psa_cipher_abort( operation ); return( status ); error: *output_length = 0; mbedtls_zeroize( temp_output_buffer, sizeof( temp_output_buffer ) ); (void) psa_cipher_abort( operation ); return( status ); } psa_status_t psa_cipher_abort( psa_cipher_operation_t *operation ) { if( operation->alg == 0 ) { /* The object has (apparently) been initialized but it is not * in use. It's ok to call abort on such an object, and there's * nothing to do. */ return( PSA_SUCCESS ); } /* Sanity check (shouldn't happen: operation->alg should * always have been initialized to a valid value). */ if( ! PSA_ALG_IS_CIPHER( operation->alg ) ) return( PSA_ERROR_BAD_STATE ); mbedtls_cipher_free( &operation->ctx.cipher ); operation->alg = 0; operation->key_set = 0; operation->iv_set = 0; operation->iv_size = 0; operation->block_size = 0; operation->iv_required = 0; return( PSA_SUCCESS ); } /****************************************************************/ /* Key Policy */ /****************************************************************/ #if !defined(MBEDTLS_PSA_CRYPTO_SPM) void psa_key_policy_init( psa_key_policy_t *policy ) { memset( policy, 0, sizeof( *policy ) ); } void psa_key_policy_set_usage( psa_key_policy_t *policy, psa_key_usage_t usage, psa_algorithm_t alg ) { policy->usage = usage; policy->alg = alg; } psa_key_usage_t psa_key_policy_get_usage( const psa_key_policy_t *policy ) { return( policy->usage ); } psa_algorithm_t psa_key_policy_get_algorithm( const psa_key_policy_t *policy ) { return( policy->alg ); } #endif /* !defined(MBEDTLS_PSA_CRYPTO_SPM) */ psa_status_t psa_set_key_policy( psa_key_slot_t key, const psa_key_policy_t *policy ) { key_slot_t *slot; psa_status_t status; if( policy == NULL ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_empty_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( ( policy->usage & ~( PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT | PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY | PSA_KEY_USAGE_DERIVE ) ) != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); slot->policy = *policy; return( PSA_SUCCESS ); } psa_status_t psa_get_key_policy( psa_key_slot_t key, psa_key_policy_t *policy ) { key_slot_t *slot; psa_status_t status; if( policy == NULL ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); *policy = slot->policy; return( PSA_SUCCESS ); } /****************************************************************/ /* Key Lifetime */ /****************************************************************/ psa_status_t psa_get_key_lifetime( psa_key_slot_t key, psa_key_lifetime_t *lifetime ) { key_slot_t *slot; psa_status_t status; status = psa_get_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); *lifetime = slot->lifetime; return( PSA_SUCCESS ); } psa_status_t psa_set_key_lifetime( psa_key_slot_t key, psa_key_lifetime_t lifetime ) { key_slot_t *slot; psa_status_t status; if( lifetime != PSA_KEY_LIFETIME_VOLATILE && lifetime != PSA_KEY_LIFETIME_PERSISTENT && lifetime != PSA_KEY_LIFETIME_WRITE_ONCE) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_empty_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( lifetime != PSA_KEY_LIFETIME_VOLATILE ) return( PSA_ERROR_NOT_SUPPORTED ); slot->lifetime = lifetime; return( PSA_SUCCESS ); } /****************************************************************/ /* AEAD */ /****************************************************************/ psa_status_t psa_aead_encrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *plaintext, size_t plaintext_length, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length ) { int ret; psa_status_t status; key_slot_t *slot; size_t key_bits; uint8_t *tag; size_t tag_length; mbedtls_cipher_id_t cipher_id; const mbedtls_cipher_info_t *cipher_info = NULL; *ciphertext_length = 0; status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_ENCRYPT, alg ); if( status != PSA_SUCCESS ) return( status ); key_bits = psa_get_key_bits( slot ); cipher_info = mbedtls_cipher_info_from_psa( alg, slot->type, key_bits, &cipher_id ); if( cipher_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); if( ( slot->type & PSA_KEY_TYPE_CATEGORY_MASK ) != PSA_KEY_TYPE_CATEGORY_SYMMETRIC ) return( PSA_ERROR_INVALID_ARGUMENT ); if( alg == PSA_ALG_GCM ) { mbedtls_gcm_context gcm; tag_length = 16; if( PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type ) != 16 ) return( PSA_ERROR_INVALID_ARGUMENT ); //make sure we have place to hold the tag in the ciphertext buffer if( ciphertext_size < ( plaintext_length + tag_length ) ) return( PSA_ERROR_BUFFER_TOO_SMALL ); //update the tag pointer to point to the end of the ciphertext_length tag = ciphertext + plaintext_length; mbedtls_gcm_init( &gcm ); ret = mbedtls_gcm_setkey( &gcm, cipher_id, slot->data.raw.data, (unsigned int) key_bits ); if( ret != 0 ) { mbedtls_gcm_free( &gcm ); return( mbedtls_to_psa_error( ret ) ); } ret = mbedtls_gcm_crypt_and_tag( &gcm, MBEDTLS_GCM_ENCRYPT, plaintext_length, nonce, nonce_length, additional_data, additional_data_length, plaintext, ciphertext, tag_length, tag ); mbedtls_gcm_free( &gcm ); } else if( alg == PSA_ALG_CCM ) { mbedtls_ccm_context ccm; tag_length = 16; if( PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type ) != 16 ) return( PSA_ERROR_INVALID_ARGUMENT ); if( nonce_length < 7 || nonce_length > 13 ) return( PSA_ERROR_INVALID_ARGUMENT ); //make sure we have place to hold the tag in the ciphertext buffer if( ciphertext_size < ( plaintext_length + tag_length ) ) return( PSA_ERROR_BUFFER_TOO_SMALL ); //update the tag pointer to point to the end of the ciphertext_length tag = ciphertext + plaintext_length; mbedtls_ccm_init( &ccm ); ret = mbedtls_ccm_setkey( &ccm, cipher_id, slot->data.raw.data, (unsigned int) key_bits ); if( ret != 0 ) { mbedtls_ccm_free( &ccm ); return( mbedtls_to_psa_error( ret ) ); } ret = mbedtls_ccm_encrypt_and_tag( &ccm, plaintext_length, nonce, nonce_length, additional_data, additional_data_length, plaintext, ciphertext, tag, tag_length ); mbedtls_ccm_free( &ccm ); } else { return( PSA_ERROR_NOT_SUPPORTED ); } if( ret != 0 ) { /* If ciphertext_size is 0 then ciphertext may be NULL and then the * call to memset would have undefined behavior. */ if( ciphertext_size != 0 ) memset( ciphertext, 0, ciphertext_size ); return( mbedtls_to_psa_error( ret ) ); } *ciphertext_length = plaintext_length + tag_length; return( PSA_SUCCESS ); } /* Locate the tag in a ciphertext buffer containing the encrypted data * followed by the tag. Return the length of the part preceding the tag in * *plaintext_length. This is the size of the plaintext in modes where * the encrypted data has the same size as the plaintext, such as * CCM and GCM. */ static psa_status_t psa_aead_unpadded_locate_tag( size_t tag_length, const uint8_t *ciphertext, size_t ciphertext_length, size_t plaintext_size, const uint8_t **p_tag ) { size_t payload_length; if( tag_length > ciphertext_length ) return( PSA_ERROR_INVALID_ARGUMENT ); payload_length = ciphertext_length - tag_length; if( payload_length > plaintext_size ) return( PSA_ERROR_BUFFER_TOO_SMALL ); *p_tag = ciphertext + payload_length; return( PSA_SUCCESS ); } psa_status_t psa_aead_decrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *ciphertext, size_t ciphertext_length, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length ) { int ret; psa_status_t status; key_slot_t *slot; size_t key_bits; const uint8_t *tag; size_t tag_length; mbedtls_cipher_id_t cipher_id; const mbedtls_cipher_info_t *cipher_info = NULL; *plaintext_length = 0; status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_DECRYPT, alg ); if( status != PSA_SUCCESS ) return( status ); key_bits = psa_get_key_bits( slot ); cipher_info = mbedtls_cipher_info_from_psa( alg, slot->type, key_bits, &cipher_id ); if( cipher_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); if( ( slot->type & PSA_KEY_TYPE_CATEGORY_MASK ) != PSA_KEY_TYPE_CATEGORY_SYMMETRIC ) return( PSA_ERROR_INVALID_ARGUMENT ); if( alg == PSA_ALG_GCM ) { mbedtls_gcm_context gcm; tag_length = 16; status = psa_aead_unpadded_locate_tag( tag_length, ciphertext, ciphertext_length, plaintext_size, &tag ); if( status != PSA_SUCCESS ) return( status ); mbedtls_gcm_init( &gcm ); ret = mbedtls_gcm_setkey( &gcm, cipher_id, slot->data.raw.data, (unsigned int) key_bits ); if( ret != 0 ) { mbedtls_gcm_free( &gcm ); return( mbedtls_to_psa_error( ret ) ); } ret = mbedtls_gcm_auth_decrypt( &gcm, ciphertext_length - tag_length, nonce, nonce_length, additional_data, additional_data_length, tag, tag_length, ciphertext, plaintext ); mbedtls_gcm_free( &gcm ); } else if( alg == PSA_ALG_CCM ) { mbedtls_ccm_context ccm; if( nonce_length < 7 || nonce_length > 13 ) return( PSA_ERROR_INVALID_ARGUMENT ); tag_length = 16; status = psa_aead_unpadded_locate_tag( tag_length, ciphertext, ciphertext_length, plaintext_size, &tag ); if( status != PSA_SUCCESS ) return( status ); mbedtls_ccm_init( &ccm ); ret = mbedtls_ccm_setkey( &ccm, cipher_id, slot->data.raw.data, (unsigned int) key_bits ); if( ret != 0 ) { mbedtls_ccm_free( &ccm ); return( mbedtls_to_psa_error( ret ) ); } ret = mbedtls_ccm_auth_decrypt( &ccm, ciphertext_length - tag_length, nonce, nonce_length, additional_data, additional_data_length, ciphertext, plaintext, tag, tag_length ); mbedtls_ccm_free( &ccm ); } else { return( PSA_ERROR_NOT_SUPPORTED ); } if( ret != 0 ) { /* If plaintext_size is 0 then plaintext may be NULL and then the * call to memset has undefined behavior. */ if( plaintext_size != 0 ) memset( plaintext, 0, plaintext_size ); } else *plaintext_length = ciphertext_length - tag_length; return( mbedtls_to_psa_error( ret ) ); } /****************************************************************/ /* Generators */ /****************************************************************/ psa_status_t psa_generator_abort( psa_crypto_generator_t *generator ) { psa_status_t status = PSA_SUCCESS; if( generator->alg == 0 ) { /* The object has (apparently) been initialized but it is not * in use. It's ok to call abort on such an object, and there's * nothing to do. */ } else #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HKDF( generator->alg ) ) { mbedtls_free( generator->ctx.hkdf.info ); status = psa_hmac_abort_internal( &generator->ctx.hkdf.hmac ); } else #endif /* MBEDTLS_MD_C */ { status = PSA_ERROR_BAD_STATE; } memset( generator, 0, sizeof( *generator ) ); return( status ); } psa_status_t psa_get_generator_capacity(const psa_crypto_generator_t *generator, size_t *capacity) { *capacity = generator->capacity; return( PSA_SUCCESS ); } #if defined(MBEDTLS_MD_C) /* Read some bytes from an HKDF-based generator. This performs a chunk * of the expand phase of the HKDF algorithm. */ static psa_status_t psa_generator_hkdf_read( psa_hkdf_generator_t *hkdf, psa_algorithm_t hash_alg, uint8_t *output, size_t output_length ) { uint8_t hash_length = PSA_HASH_SIZE( hash_alg ); psa_status_t status; while( output_length != 0 ) { /* Copy what remains of the current block */ uint8_t n = hash_length - hkdf->offset_in_block; if( n > output_length ) n = (uint8_t) output_length; memcpy( output, hkdf->output_block + hkdf->offset_in_block, n ); output += n; output_length -= n; hkdf->offset_in_block += n; if( output_length == 0 ) break; /* We can't be wanting more output after block 0xff, otherwise * the capacity check in psa_generator_read() would have * prevented this call. It could happen only if the generator * object was corrupted or if this function is called directly * inside the library. */ if( hkdf->block_number == 0xff ) return( PSA_ERROR_BAD_STATE ); /* We need a new block */ ++hkdf->block_number; hkdf->offset_in_block = 0; status = psa_hmac_setup_internal( &hkdf->hmac, hkdf->prk, hash_length, hash_alg ); if( status != PSA_SUCCESS ) return( status ); if( hkdf->block_number != 1 ) { status = psa_hash_update( &hkdf->hmac.hash_ctx, hkdf->output_block, hash_length ); if( status != PSA_SUCCESS ) return( status ); } status = psa_hash_update( &hkdf->hmac.hash_ctx, hkdf->info, hkdf->info_length ); if( status != PSA_SUCCESS ) return( status ); status = psa_hash_update( &hkdf->hmac.hash_ctx, &hkdf->block_number, 1 ); if( status != PSA_SUCCESS ) return( status ); status = psa_hmac_finish_internal( &hkdf->hmac, hkdf->output_block, sizeof( hkdf->output_block ) ); if( status != PSA_SUCCESS ) return( status ); } return( PSA_SUCCESS ); } #endif /* MBEDTLS_MD_C */ psa_status_t psa_generator_read( psa_crypto_generator_t *generator, uint8_t *output, size_t output_length ) { psa_status_t status; if( output_length > generator->capacity ) { generator->capacity = 0; /* Go through the error path to wipe all confidential data now * that the generator object is useless. */ status = PSA_ERROR_INSUFFICIENT_CAPACITY; goto exit; } if( output_length == 0 && generator->capacity == 0 && generator->alg == 0 ) { /* Edge case: this is a blank or finished generator, and 0 * bytes were requested. The right error in this case could * be either INSUFFICIENT_CAPACITY or BAD_STATE. Return * INSUFFICIENT_CAPACITY, which is right for a finished * generator, for consistency with the case when * output_length > 0. */ return( PSA_ERROR_INSUFFICIENT_CAPACITY ); } generator->capacity -= output_length; #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HKDF( generator->alg ) ) { psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( generator->alg ); status = psa_generator_hkdf_read( &generator->ctx.hkdf, hash_alg, output, output_length ); } else #endif /* MBEDTLS_MD_C */ { return( PSA_ERROR_BAD_STATE ); } exit: if( status != PSA_SUCCESS ) { psa_generator_abort( generator ); memset( output, '!', output_length ); } return( status ); } #if defined(MBEDTLS_DES_C) static void psa_des_set_key_parity( uint8_t *data, size_t data_size ) { if( data_size >= 8 ) mbedtls_des_key_set_parity( data ); if( data_size >= 16 ) mbedtls_des_key_set_parity( data + 8 ); if( data_size >= 24 ) mbedtls_des_key_set_parity( data + 16 ); } #endif /* MBEDTLS_DES_C */ psa_status_t psa_generator_import_key( psa_key_slot_t key, psa_key_type_t type, size_t bits, psa_crypto_generator_t *generator ) { uint8_t *data = NULL; size_t bytes = PSA_BITS_TO_BYTES( bits ); psa_status_t status; if( ! key_type_is_raw_bytes( type ) ) return( PSA_ERROR_INVALID_ARGUMENT ); if( bits % 8 != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); data = mbedtls_calloc( 1, bytes ); if( data == NULL ) return( PSA_ERROR_INSUFFICIENT_MEMORY ); status = psa_generator_read( generator, data, bytes ); if( status != PSA_SUCCESS ) goto exit; #if defined(MBEDTLS_DES_C) if( type == PSA_KEY_TYPE_DES ) psa_des_set_key_parity( data, bytes ); #endif /* MBEDTLS_DES_C */ status = psa_import_key( key, type, data, bytes ); exit: mbedtls_free( data ); return( status ); } /****************************************************************/ /* Key derivation */ /****************************************************************/ /* Set up an HKDF-based generator. This is exactly the extract phase * of the HKDF algorithm. */ static psa_status_t psa_generator_hkdf_setup( psa_hkdf_generator_t *hkdf, key_slot_t *slot, psa_algorithm_t hash_alg, const uint8_t *salt, size_t salt_length, const uint8_t *label, size_t label_length ) { psa_status_t status; status = psa_hmac_setup_internal( &hkdf->hmac, salt, salt_length, PSA_ALG_HMAC_GET_HASH( hash_alg ) ); if( status != PSA_SUCCESS ) return( status ); status = psa_hash_update( &hkdf->hmac.hash_ctx, slot->data.raw.data, slot->data.raw.bytes ); if( status != PSA_SUCCESS ) return( status ); status = psa_hmac_finish_internal( &hkdf->hmac, hkdf->prk, sizeof( hkdf->prk ) ); if( status != PSA_SUCCESS ) return( status ); hkdf->offset_in_block = PSA_HASH_SIZE( hash_alg ); hkdf->block_number = 0; hkdf->info_length = label_length; if( label_length != 0 ) { hkdf->info = mbedtls_calloc( 1, label_length ); if( hkdf->info == NULL ) return( PSA_ERROR_INSUFFICIENT_MEMORY ); memcpy( hkdf->info, label, label_length ); } return( PSA_SUCCESS ); } psa_status_t psa_key_derivation( psa_crypto_generator_t *generator, psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *salt, size_t salt_length, const uint8_t *label, size_t label_length, size_t capacity ) { key_slot_t *slot; psa_status_t status; if( generator->alg != 0 ) return( PSA_ERROR_BAD_STATE ); status = psa_get_key_from_slot( key, &slot, PSA_KEY_USAGE_DERIVE, alg ); if( status != PSA_SUCCESS ) return( status ); if( slot->type != PSA_KEY_TYPE_DERIVE ) return( PSA_ERROR_INVALID_ARGUMENT ); if( ! PSA_ALG_IS_KEY_DERIVATION( alg ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if defined(MBEDTLS_MD_C) if( PSA_ALG_IS_HKDF( alg ) ) { psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg ); size_t hash_size = PSA_HASH_SIZE( hash_alg ); if( hash_size == 0 ) return( PSA_ERROR_NOT_SUPPORTED ); if( capacity > 255 * hash_size ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_generator_hkdf_setup( &generator->ctx.hkdf, slot, hash_alg, salt, salt_length, label, label_length ); } else #endif { return( PSA_ERROR_NOT_SUPPORTED ); } /* Set generator->alg even on failure so that abort knows what to do. */ generator->alg = alg; if( status == PSA_SUCCESS ) generator->capacity = capacity; else psa_generator_abort( generator ); return( status ); } /****************************************************************/ /* Random generation */ /****************************************************************/ psa_status_t psa_generate_random( uint8_t *output, size_t output_size ) { int ret = mbedtls_ctr_drbg_random( &global_data.ctr_drbg, output, output_size ); return( mbedtls_to_psa_error( ret ) ); } psa_status_t psa_generate_key( psa_key_slot_t key, psa_key_type_t type, size_t bits, const void *extra, size_t extra_size ) { key_slot_t *slot; psa_status_t status; if( extra == NULL && extra_size != 0 ) return( PSA_ERROR_INVALID_ARGUMENT ); status = psa_get_empty_key_slot( key, &slot ); if( status != PSA_SUCCESS ) return( status ); if( key_type_is_raw_bytes( type ) ) { status = prepare_raw_data_slot( type, bits, &slot->data.raw ); if( status != PSA_SUCCESS ) return( status ); status = psa_generate_random( slot->data.raw.data, slot->data.raw.bytes ); if( status != PSA_SUCCESS ) { mbedtls_free( slot->data.raw.data ); return( status ); } #if defined(MBEDTLS_DES_C) if( type == PSA_KEY_TYPE_DES ) psa_des_set_key_parity( slot->data.raw.data, slot->data.raw.bytes ); #endif /* MBEDTLS_DES_C */ } else #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME) if ( type == PSA_KEY_TYPE_RSA_KEYPAIR ) { mbedtls_rsa_context *rsa; int ret; int exponent = 65537; if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS ) return( PSA_ERROR_NOT_SUPPORTED ); if( extra != NULL ) { const psa_generate_key_extra_rsa *p = extra; if( extra_size != sizeof( *p ) ) return( PSA_ERROR_INVALID_ARGUMENT ); #if INT_MAX < 0xffffffff /* Check that the uint32_t value passed by the caller fits * in the range supported by this implementation. */ if( p->e > INT_MAX ) return( PSA_ERROR_NOT_SUPPORTED ); #endif exponent = p->e; } rsa = mbedtls_calloc( 1, sizeof( *rsa ) ); if( rsa == NULL ) return( PSA_ERROR_INSUFFICIENT_MEMORY ); mbedtls_rsa_init( rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE ); ret = mbedtls_rsa_gen_key( rsa, mbedtls_ctr_drbg_random, &global_data.ctr_drbg, (unsigned int) bits, exponent ); if( ret != 0 ) { mbedtls_rsa_free( rsa ); mbedtls_free( rsa ); return( mbedtls_to_psa_error( ret ) ); } slot->data.rsa = rsa; } else #endif /* MBEDTLS_RSA_C && MBEDTLS_GENPRIME */ #if defined(MBEDTLS_ECP_C) if ( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEYPAIR( type ) ) { psa_ecc_curve_t curve = PSA_KEY_TYPE_GET_CURVE( type ); mbedtls_ecp_group_id grp_id = mbedtls_ecc_group_of_psa( curve ); const mbedtls_ecp_curve_info *curve_info = mbedtls_ecp_curve_info_from_grp_id( grp_id ); mbedtls_ecp_keypair *ecp; int ret; if( extra != NULL ) return( PSA_ERROR_NOT_SUPPORTED ); if( grp_id == MBEDTLS_ECP_DP_NONE || curve_info == NULL ) return( PSA_ERROR_NOT_SUPPORTED ); if( curve_info->bit_size != bits ) return( PSA_ERROR_INVALID_ARGUMENT ); ecp = mbedtls_calloc( 1, sizeof( *ecp ) ); if( ecp == NULL ) return( PSA_ERROR_INSUFFICIENT_MEMORY ); mbedtls_ecp_keypair_init( ecp ); ret = mbedtls_ecp_gen_key( grp_id, ecp, mbedtls_ctr_drbg_random, &global_data.ctr_drbg ); if( ret != 0 ) { mbedtls_ecp_keypair_free( ecp ); mbedtls_free( ecp ); return( mbedtls_to_psa_error( ret ) ); } slot->data.ecp = ecp; } else #endif /* MBEDTLS_ECP_C */ return( PSA_ERROR_NOT_SUPPORTED ); slot->type = type; return( PSA_SUCCESS ); } /****************************************************************/ /* Module setup */ /****************************************************************/ void mbedtls_psa_crypto_free( void ) { psa_key_slot_t key; for( key = 1; key <= PSA_KEY_SLOT_COUNT; key++ ) psa_destroy_key( key ); mbedtls_ctr_drbg_free( &global_data.ctr_drbg ); mbedtls_entropy_free( &global_data.entropy ); mbedtls_zeroize( &global_data, sizeof( global_data ) ); } psa_status_t psa_crypto_init( void ) { int ret; const unsigned char drbg_seed[] = "PSA"; if( global_data.initialized != 0 ) return( PSA_SUCCESS ); mbedtls_zeroize( &global_data, sizeof( global_data ) ); mbedtls_entropy_init( &global_data.entropy ); mbedtls_ctr_drbg_init( &global_data.ctr_drbg ); ret = mbedtls_ctr_drbg_seed( &global_data.ctr_drbg, mbedtls_entropy_func, &global_data.entropy, drbg_seed, sizeof( drbg_seed ) - 1 ); if( ret != 0 ) goto exit; global_data.initialized = 1; exit: if( ret != 0 ) mbedtls_psa_crypto_free( ); return( mbedtls_to_psa_error( ret ) ); } #endif /* MBEDTLS_PSA_CRYPTO_C */