#line 1 "helpers.function" /*----------------------------------------------------------------------------*/ /* Headers */ #include #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_fprintf fprintf #define mbedtls_snprintf snprintf #define mbedtls_calloc calloc #define mbedtls_free free #define mbedtls_exit exit #define mbedtls_time time #define mbedtls_time_t time_t #define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS #define MBEDTLS_EXIT_FAILURE EXIT_FAILURE #endif #if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C) #include "mbedtls/memory_buffer_alloc.h" #endif #ifdef _MSC_VER #include typedef UINT32 uint32_t; #define strncasecmp _strnicmp #define strcasecmp _stricmp #else #include #endif #include #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) #include #endif /*----------------------------------------------------------------------------*/ /* Constants */ #define DEPENDENCY_SUPPORTED 0 #define DEPENDENCY_NOT_SUPPORTED 1 #define KEY_VALUE_MAPPING_FOUND 0 #define KEY_VALUE_MAPPING_NOT_FOUND -1 #define DISPATCH_TEST_SUCCESS 0 #define DISPATCH_TEST_FN_NOT_FOUND 1 #define DISPATCH_INVALID_TEST_DATA 2 #define DISPATCH_UNSUPPORTED_SUITE 3 /*----------------------------------------------------------------------------*/ /* Macros */ #define TEST_ASSERT( TEST ) \ do { \ if( ! (TEST) ) \ { \ test_fail( #TEST, __LINE__, __FILE__ ); \ goto exit; \ } \ } while( 0 ) #define assert(a) if( !( a ) ) \ { \ mbedtls_fprintf( stderr, "Assertion Failed at %s:%d - %s\n", \ __FILE__, __LINE__, #a ); \ mbedtls_exit( 1 ); \ } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif /*----------------------------------------------------------------------------*/ /* Global variables */ static struct { int failed; const char *test; const char *filename; int line_no; } test_info; /*----------------------------------------------------------------------------*/ /* Helper flags for complex dependencies */ /* Indicates whether we expect mbedtls_entropy_init * to initialize some strong entropy source. */ #if defined(MBEDTLS_TEST_NULL_ENTROPY) || \ ( !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES) && \ ( !defined(MBEDTLS_NO_PLATFORM_ENTROPY) || \ defined(MBEDTLS_HAVEGE_C) || \ defined(MBEDTLS_ENTROPY_HARDWARE_ALT) || \ defined(ENTROPY_NV_SEED) ) ) #define ENTROPY_HAVE_STRONG #endif /*----------------------------------------------------------------------------*/ /* Helper Functions */ void test_fail( const char *test, int line_no, const char* filename ) { test_info.failed = 1; test_info.test = test; test_info.line_no = line_no; test_info.filename = filename; } #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) static int redirect_output( FILE** out_stream, const char* path ) { int stdout_fd = dup( fileno( *out_stream ) ); if( stdout_fd == -1 ) { return -1; } fflush( *out_stream ); fclose( *out_stream ); *out_stream = fopen( path, "w" ); if( *out_stream == NULL ) { close( stdout_fd ); return -1; } return stdout_fd; } static int restore_output( FILE** out_stream, int old_fd ) { fflush( *out_stream ); fclose( *out_stream ); *out_stream = fdopen( old_fd, "w" ); if( *out_stream == NULL ) { return -1; } return 0; } static void close_output( FILE* out_stream ) { fclose( out_stream ); } #endif /* __unix__ || __APPLE__ __MACH__ */ int unhexify( unsigned char *obuf, const char *ibuf ) { unsigned char c, c2; int len = strlen( ibuf ) / 2; assert( strlen( ibuf ) % 2 == 0 ); /* must be even number of bytes */ while( *ibuf != 0 ) { c = *ibuf++; if( c >= '0' && c <= '9' ) c -= '0'; else if( c >= 'a' && c <= 'f' ) c -= 'a' - 10; else if( c >= 'A' && c <= 'F' ) c -= 'A' - 10; else assert( 0 ); c2 = *ibuf++; if( c2 >= '0' && c2 <= '9' ) c2 -= '0'; else if( c2 >= 'a' && c2 <= 'f' ) c2 -= 'a' - 10; else if( c2 >= 'A' && c2 <= 'F' ) c2 -= 'A' - 10; else assert( 0 ); *obuf++ = ( c << 4 ) | c2; } return len; } void hexify( unsigned char *obuf, const unsigned char *ibuf, int len ) { unsigned char l, h; while( len != 0 ) { h = *ibuf / 16; l = *ibuf % 16; if( h < 10 ) *obuf++ = '0' + h; else *obuf++ = 'a' + h - 10; if( l < 10 ) *obuf++ = '0' + l; else *obuf++ = 'a' + l - 10; ++ibuf; len--; } } /** * Allocate and zeroize a buffer. * * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. * * For convenience, dies if allocation fails. */ static unsigned char *zero_alloc( size_t len ) { void *p; size_t actual_len = ( len != 0 ) ? len : 1; p = mbedtls_calloc( 1, actual_len ); assert( p != NULL ); memset( p, 0x00, actual_len ); return( p ); } /** * Allocate and fill a buffer from hex data. * * The buffer is sized exactly as needed. This allows to detect buffer * overruns (including overreads) when running the test suite under valgrind. * * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. * * For convenience, dies if allocation fails. */ unsigned char *unhexify_alloc( const char *ibuf, size_t *olen ) { unsigned char *obuf; *olen = strlen( ibuf ) / 2; if( *olen == 0 ) return( zero_alloc( *olen ) ); obuf = mbedtls_calloc( 1, *olen ); assert( obuf != NULL ); (void) unhexify( obuf, ibuf ); return( obuf ); } /** * This function just returns data from rand(). * Although predictable and often similar on multiple * runs, this does not result in identical random on * each run. So do not use this if the results of a * test depend on the random data that is generated. * * rng_state shall be NULL. */ static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ) { #if !defined(__OpenBSD__) size_t i; if( rng_state != NULL ) rng_state = NULL; for( i = 0; i < len; ++i ) output[i] = rand(); #else if( rng_state != NULL ) rng_state = NULL; arc4random_buf( output, len ); #endif /* !OpenBSD */ return( 0 ); } /** * This function only returns zeros * * rng_state shall be NULL. */ int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len ) { if( rng_state != NULL ) rng_state = NULL; memset( output, 0, len ); return( 0 ); } typedef struct { unsigned char *buf; size_t length; } rnd_buf_info; /** * This function returns random based on a buffer it receives. * * rng_state shall be a pointer to a rnd_buf_info structure. * * The number of bytes released from the buffer on each call to * the random function is specified by per_call. (Can be between * 1 and 4) * * After the buffer is empty it will return rand(); */ int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len ) { rnd_buf_info *info = (rnd_buf_info *) rng_state; size_t use_len; if( rng_state == NULL ) return( rnd_std_rand( NULL, output, len ) ); use_len = len; if( len > info->length ) use_len = info->length; if( use_len ) { memcpy( output, info->buf, use_len ); info->buf += use_len; info->length -= use_len; } if( len - use_len > 0 ) return( rnd_std_rand( NULL, output + use_len, len - use_len ) ); return( 0 ); } /** * Info structure for the pseudo random function * * Key should be set at the start to a test-unique value. * Do not forget endianness! * State( v0, v1 ) should be set to zero. */ typedef struct { uint32_t key[16]; uint32_t v0, v1; } rnd_pseudo_info; /** * This function returns random based on a pseudo random function. * This means the results should be identical on all systems. * Pseudo random is based on the XTEA encryption algorithm to * generate pseudorandom. * * rng_state shall be a pointer to a rnd_pseudo_info structure. */ int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len ) { rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; uint32_t i, *k, sum, delta=0x9E3779B9; unsigned char result[4], *out = output; if( rng_state == NULL ) return( rnd_std_rand( NULL, output, len ) ); k = info->key; while( len > 0 ) { size_t use_len = ( len > 4 ) ? 4 : len; sum = 0; for( i = 0; i < 32; i++ ) { info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) ) + info->v1 ) ^ ( sum + k[sum & 3] ); sum += delta; info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) ) + info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] ); } PUT_UINT32_BE( info->v0, result, 0 ); memcpy( out, result, use_len ); len -= use_len; out += 4; } return( 0 ); }