/* ec_dsa.c - TinyCrypt implementation of EC-DSA */ /* * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved. * SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2014, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE.*/ /* * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #include #include #if default_RNG_defined static uECC_RNG_Function g_rng_function = &default_CSPRNG; #else static uECC_RNG_Function g_rng_function = 0; #endif static void bits2int(uECC_word_t *native, const uint8_t *bits, unsigned bits_size, uECC_Curve curve) { unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits); unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits); int shift; uECC_word_t carry; uECC_word_t *ptr; if (bits_size > num_n_bytes) { bits_size = num_n_bytes; } uECC_vli_clear(native); uECC_vli_bytesToNative(native, bits, bits_size); if (bits_size * 8 <= (unsigned)curve->num_n_bits) { return; } shift = bits_size * 8 - curve->num_n_bits; carry = 0; ptr = native + num_n_words; while (ptr-- > native) { uECC_word_t temp = *ptr; *ptr = (temp >> shift) | carry; carry = temp << (uECC_WORD_BITS - shift); } /* Reduce mod curve_n */ if (uECC_vli_cmp_unsafe(curve->n, native) != 1) { uECC_vli_sub(native, native, curve->n); } } int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash, unsigned hash_size, uECC_word_t *k, uint8_t *signature, uECC_Curve curve) { uECC_word_t tmp[NUM_ECC_WORDS]; uECC_word_t s[NUM_ECC_WORDS]; uECC_word_t p[NUM_ECC_WORDS * 2]; wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); int r; /* Make sure 0 < k < curve_n */ if (uECC_vli_isZero(k) || uECC_vli_cmp(curve->n, k) != 1) { return 0; } r = EccPoint_mult_safer(p, curve->G, k, curve); if (r == 0 || uECC_vli_isZero(p)) { return 0; } /* If an RNG function was specified, get a random number to prevent side channel analysis of k. */ if (!g_rng_function) { uECC_vli_clear(tmp); tmp[0] = 1; } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) { return 0; } /* Prevent side channel analysis of uECC_vli_modInv() to determine bits of k / the private key by premultiplying by a random number */ uECC_vli_modMult(k, k, tmp, curve->n); /* k' = rand * k */ uECC_vli_modInv(k, k, curve->n); /* k = 1 / k' */ uECC_vli_modMult(k, k, tmp, curve->n); /* k = 1 / k */ uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */ /* tmp = d: */ uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); s[num_n_words - 1] = 0; uECC_vli_set(s, p); uECC_vli_modMult(s, tmp, s, curve->n); /* s = r*d */ bits2int(tmp, message_hash, hash_size, curve); uECC_vli_modAdd(s, tmp, s, curve->n); /* s = e + r*d */ uECC_vli_modMult(s, s, k, curve->n); /* s = (e + r*d) / k */ if (uECC_vli_numBits(s) > (bitcount_t)curve->num_bytes * 8) { return 0; } uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s); return 1; } int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash, unsigned hash_size, uint8_t *signature, uECC_Curve curve) { uECC_word_t _random[2*NUM_ECC_WORDS]; uECC_word_t k[NUM_ECC_WORDS]; uECC_word_t tries; for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { /* Generating _random uniformly at random: */ uECC_RNG_Function rng_function = uECC_get_rng(); if (!rng_function || !rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) { return 0; } // computing k as modular reduction of _random (see FIPS 186.4 B.5.1): uECC_vli_mmod(k, _random, curve->n); if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, curve)) { return 1; } } return 0; } static bitcount_t smax(bitcount_t a, bitcount_t b) { return (a > b ? a : b); } int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash, unsigned hash_size, const uint8_t *signature, uECC_Curve curve) { uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS]; uECC_word_t z[NUM_ECC_WORDS]; uECC_word_t sum[NUM_ECC_WORDS * 2]; uECC_word_t rx[NUM_ECC_WORDS]; uECC_word_t ry[NUM_ECC_WORDS]; uECC_word_t tx[NUM_ECC_WORDS]; uECC_word_t ty[NUM_ECC_WORDS]; uECC_word_t tz[NUM_ECC_WORDS]; const uECC_word_t *points[4]; const uECC_word_t *point; bitcount_t num_bits; bitcount_t i; uECC_word_t _public[NUM_ECC_WORDS * 2]; uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS]; wordcount_t num_words = curve->num_words; wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); if (curve != uECC_secp256r1()) return 0; rx[num_n_words - 1] = 0; r[num_n_words - 1] = 0; s[num_n_words - 1] = 0; uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes, curve->num_bytes); uECC_vli_bytesToNative(r, signature, curve->num_bytes); uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes); /* r, s must not be 0. */ if (uECC_vli_isZero(r) || uECC_vli_isZero(s)) { return 0; } /* r, s must be < n. */ if (uECC_vli_cmp_unsafe(curve->n, r) != 1 || uECC_vli_cmp_unsafe(curve->n, s) != 1) { return 0; } /* Calculate u1 and u2. */ uECC_vli_modInv(z, s, curve->n); /* z = 1/s */ u1[num_n_words - 1] = 0; bits2int(u1, message_hash, hash_size, curve); uECC_vli_modMult(u1, u1, z, curve->n); /* u1 = e/s */ uECC_vli_modMult(u2, r, z, curve->n); /* u2 = r/s */ /* Calculate sum = G + Q. */ uECC_vli_set(sum, _public); uECC_vli_set(sum + num_words, _public + num_words); uECC_vli_set(tx, curve->G); uECC_vli_set(ty, curve->G + num_words); uECC_vli_modSub(z, sum, tx, curve->p); /* z = x2 - x1 */ XYcZ_add(tx, ty, sum, sum + num_words, curve); uECC_vli_modInv(z, z, curve->p); /* z = 1/z */ apply_z(sum, sum + num_words, z); /* Use Shamir's trick to calculate u1*G + u2*Q */ points[0] = 0; points[1] = curve->G; points[2] = _public; points[3] = sum; num_bits = smax(uECC_vli_numBits(u1), uECC_vli_numBits(u2)); point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) | ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)]; uECC_vli_set(rx, point); uECC_vli_set(ry, point + num_words); uECC_vli_clear(z); z[0] = 1; for (i = num_bits - 2; i >= 0; --i) { uECC_word_t index; curve->double_jacobian(rx, ry, z, curve); index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1); point = points[index]; if (point) { uECC_vli_set(tx, point); uECC_vli_set(ty, point + num_words); apply_z(tx, ty, z); uECC_vli_modSub(tz, rx, tx, curve->p); /* Z = x2 - x1 */ XYcZ_add(tx, ty, rx, ry, curve); uECC_vli_modMult_fast(z, z, tz); } } uECC_vli_modInv(z, z, curve->p); /* Z = 1/Z */ apply_z(rx, ry, z); /* v = x1 (mod n) */ if (uECC_vli_cmp_unsafe(curve->n, rx) != 1) { uECC_vli_sub(rx, rx, curve->n); } /* Accept only if v == r. */ return (int)(uECC_vli_equal(rx, r) == 0); }